TY - JOUR A1 - Schwarze, Thomas A1 - Traeger, Juliane A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Holdt, Hans-Jürgen T1 - Macrocyclic dithiomaleonitriles for an efficient PdCl2 coordination JF - Inorganica chimica acta : the international inorganic chemistry journal N2 - We have synthesized a set of new unsaturated macrocyclic dithioethers with an increasing number of flexible methylene units 1-7 (Scheme 2) to investigate the correlation between the ring size of these ligands, the chelation effect and the consequences for an efficient PdCl2 coordination. The dithioethers 1-7 and the complex [PdCl2(4)]center dot CHCl3 were characterized by X-ray diffraction analysis. The crystal structures of 1-7 show that 2-7 are better preorganized chelating ligands for an exocyclic PdCl2 coordination than 1. The chelation effect of 1-7, the orientation of the sulfur atoms and the S center dot center dot center dot S donor distances, are influenced by the flexibility of the methylene units. In this series the unsaturated macrocyclic ligands 5 and 6 are the best chelating ligands for an efficient PdCl2 coordination. Comparative solvent extraction experiments with mn-12S(2)O(2) (mn = maleonitrile) reveal that the low interface activity of the new ligands reduces the extraction rate. However, a comparison with open-chain dithiomaleonitriles shows the impact of the macrocyclic effect of 4 and 5 on the extraction yield. KW - Thioether ligands KW - Palladium KW - Synthesis KW - X-ray diffraction KW - Chelation effect KW - Extraction Y1 - 2013 U6 - https://doi.org/10.1016/j.ica.2013.08.020 SN - 0020-1693 SN - 1873-3255 VL - 408 IS - 2 SP - 53 EP - 58 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Schwarze, Thomas A1 - Sprenger, Tobias A1 - Riemer, Janine T1 - 1,2,3-Triazol-1,4-diyl-Fluoroionophores for Zn2+, Mg2+ and Ca2+ based on Fluorescence Intensity Enhancements in Water JF - ChemistrySelect N2 - Herein, we represent cation-responsive fluorescent probes for the divalent cations Zn2+, Mg2+ and Ca2+, which show cation-induced fluorescence enhancements (FE) in water. The Zn2+-responsive probes Zn1, Zn2, Zn3 and Zn4 are based on o-aminoanisole-N,N-diacetic acid (AADA) derivatives and show in the presence of Zn2+ FE factors of 11.4, 13.9, 6.1 and 8.2, respectively. Most of all, Zn1 and Zn2 show higher Zn2+ induced FE than the regioisomeric triazole linked fluorescent probes Zn3 and Zn4, respectively. In this set, ZN2 is the most suitable probe to detect extracellular Zn2+ levels. For the Mg2+-responsive fluorescent probes Mg1, Mg2 and Mg3 based on o-aminophenol-N,N,O-triacetic acid (APTRA) derivatives, we also found that the regioisomeric linkage influences the fluorescence responds towards Mg2+ (Mg1+100 mM Mg2+ (FEF=13.2) and Mg3+100 mM Mg2+ (FEF=2.1)). Mg2 shows the highest Mg2+-induced FE by a factor of 25.7 and an appropriate K-d value of 3 mM to measure intracellular Mg2+ levels. Further, the Ca2+-responsive fluorescent probes Ca1 and Ca2 equipped with a 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) derivative show high Ca2+-induced FEs (Ca1 (FEF=22.1) and Ca2 (FEF=23.0)). Herein, only Ca1 (K-d=313 nM) is a suitable Ca2+ fluorescent indicator to determine intracellular Ca2+ levels. KW - calcium KW - fluorescence KW - magnesium KW - probes KW - zinc Y1 - 2020 U6 - https://doi.org/10.1002/slct.202003695 SN - 2365-6549 VL - 5 IS - 41 SP - 12727 EP - 12735 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Sperlich, Eric A1 - Müller, Thomas A1 - Kelling, Alexandra A1 - Holdt, Hans-Jürgen T1 - Synthesis efforts of acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis(dialkylamino)maleonitriles as fluorescent probes for cations and a new colorimetric copper(II) chemodosimeter JF - Helvetica chimica acta N2 - In this article, we report on the synthesis of acyclic bis(monoalkylamino)maleonitriles and on the intended synthesis of macrocyclic bis(dialkylamino)maleonitriles to get fluorescent probes for cations. During our efforts to synthesize macrocyclic bis(dialkylamino)maleonitriles, we were only able to isolate macrocyclic bis(dialkylamino)-fumaronitriles. The synthesis of macrocyclic bis(dialkylamino)maleonitriles is challenging, due to the fact that bis-(dialkylamino)fumaronitriles are thermodynamically more stable than the corresponding bis(dialkylamino)-maleonitriles. Further, it turned out that the acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis-(dialkylamino)fumaronitriles are no suitable tools to detect cations by a strong fluorescence enhancement. Further, only the bis(monoalkylamino)maleonitriles, which are bearing a 2-pyridyl unit as an additional complexing unit, are able to selectively recognize copper(II) by a color change from yellow to red. KW - copper KW - fumaronitrile KW - ligands KW - macrocycles KW - maleonitrile Y1 - 2021 U6 - https://doi.org/10.1002/hlca.202100028 SN - 1522-2675 VL - 104 IS - 6 SP - e2100028 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Schneider, Radu A1 - Riemer, Janine A1 - Holdt, Hans-Jürgen T1 - A Highly K+-Selective Fluorescent Probe - Tuning the K+-Complex Stability and the K+/Na+ Selectivity by Varying the Lariat-Alkoxy Unit of a Phenylaza[18]crown-6 Ionophore JF - Chemistry : an Asian journal ; an ACES journal N2 - A desirable goal is to synthesize easily accessible and highly K+/Na+-selective fluoroionophores to monitor physiological K+ levels in vitro and in vivo. Therefore, highly K+/Na+-selective ionophores have to be developed. Herein, we obtained in a sequence of only four synthetic steps a set of K+-responsive fluorescent probes 4, 5 and 6. In a systematic study, we investigated the influence of the alkoxy substitution in ortho position of the aniline moiety in -conjugated aniline-1,2,3-triazole-coumarin-fluoroionophores 4, 5 and 6 [R=MeO (4), EtO (5) and iPrO (6)] towards the K+-complex stability and K+/Na+ selectivity. The highest K+-complex stability showed fluoroionophore 4 with a dissociation constant K-d of 19mm, but the K-d value increases to 31mm in combined K+/Na+ solutions, indicating a poor K+/Na+ selectivity. By contrast, 6 showed even in the presence of competitive Na+ ions equal K-d values (K-d(K+)=45mm and K-d(K+/Na+)=45mm) and equal K+-induced fluorescence enhancement factors (FEFs=2.3). Thus, the fluorescent probe 6 showed an outstanding K+/Na+ selectivity and is a suitable fluorescent tool to measure physiological K+ levels in the range of 10-80mm in vitro. Further, the isopropoxy-substituted N-phenylaza[18]crown-6 ionophore in 6 is a highly K+-selective building block with a feasible synthetic route. KW - crown compounds KW - fluorescence KW - fluorescent probes KW - potassium KW - sodium Y1 - 2016 U6 - https://doi.org/10.1002/asia.201500956 SN - 1861-4728 SN - 1861-471X VL - 11 SP - 241 EP - 247 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Müller, Holger A1 - John, Leonard A1 - Holdt, Hans‐Jürgen A1 - Wessig, Pablo T1 - Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1136 KW - crown compounds KW - fluorescence lifetime KW - fluorescent probes KW - ratiometric KW - sodium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437482 SN - 1866-8372 IS - 1136 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Müller, Holger A1 - John, Leonard A1 - Holdt, Hans-Jürgen A1 - Wessig, Pablo T1 - Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response JF - Chemistry - a European journal N2 - Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm. KW - crown compounds KW - fluorescence lifetime KW - fluorescent probes KW - ratiometric KW - sodium Y1 - 2019 U6 - https://doi.org/10.1002/chem.201902536 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 53 SP - 12412 EP - 12422 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Holdt, Hans-Jürgen T1 - A Ratiometric Fluorescent Probe for K+ in Water Based on a Phenylaza-18-Crown-6 Lariat Ether JF - Chemistry - a European journal N2 - This work presents two molecular fluorescent probes 1 and 2 for the selective determination of physiologically relevant K+ levels in water based on a highly K+/Na+ selective building block, the o-(2-methoxyethoxy)phenylaza-18-crown-6 lariat ether unit. Fluorescent probe 1 showed a high K+-induced fluorescence enhancement (FE) by a factor of 7.7 of the anthracenic emission and a dissociation constant (K-d) value of 38mm in water. Further, for 2+K+, we observed a dual emission behavior at 405 and 505nm. K+ increases the fluorescence intensity of 2 at 405nm by a factor of approximately 4.6 and K+ decreases the fluorescence intensity at 505nm by a factor of about 4.8. Fluorescent probe 2+K+ exhibited a K-d value of approximately 8mm in Na+-free solutions and in combined K+/Na+ solution a similar K-d value of about 9mm was found, reflecting the high K+/Na+ selectivity of 2 in water. Therefore, 2 is a promising fluorescent tool to measure ratiometrically and selectively physiologically relevant K+ levels. KW - charge transfer KW - crown compounds KW - fluorescence KW - potassium KW - ratiometric sensors Y1 - 2018 U6 - https://doi.org/10.1002/chem.201802306 SN - 0947-6539 SN - 1521-3765 VL - 24 IS - 40 SP - 10116 EP - 10121 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Eidner, Sascha A1 - Holdt, Hans-Jürgen T1 - A Highly K+-Selective Two-Photon Fluorescent Probe JF - Chemistry - a European journal N2 - A highly K+-selective two-photon fluorescent probe for the in vitro monitoring of physiological K+ levels in the range of 1-100 mM is reported. The two-photon excited fluorescence (TPEF) probe shows a fluorescence enhancement (FE) by a factor of about three in the presence of 160 mM K+, independently of one-photon (OP, 430 nm) or two-photon (TP, 860 nm) excitation and comparable K+-induced FEs in the presence of competitive Na+ ions. The estimated dissociation constant (K-d) values in Na+-free solutions (K-d(OP)=(28 +/- 5) mM and K-d(TP)=(36 +/- 6) mM) and in combined K+/Na+ solutions (K-d(OP)=(38 +/- 8) mM and K-d(TP)=(46 +/- 25) mM) reflecting the high K+/Na+ selectivity of the fluorescent probe. The TP absorption cross-section (sigma(2PA)) of the TPEF probe+160 mMK(+) is 26 GM at 860 nm. Therefore, the TPEF probe is a suitable tool for the in vitro determination of K+. KW - click chemistry KW - fluorescence KW - fluorescent probes KW - potassium KW - two-photon Y1 - 2015 U6 - https://doi.org/10.1002/chem.201501473 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 32 SP - 11306 EP - 11310 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine T1 - Highly K+ selective probes with fluorescence emission wavelengths higher than 500 nm in water JF - ChemistrySelect N2 - Herein, we report on the synthesis of highly K+/Na+ selective fluorescent probes in a feasible number of synthetic steps. These K+ selective fluorescent probes, so called fluoroionophores, 1 and 2 consists of different highly K+/Na+ selective building blocks the alkoxy-substituted N-phenylaza-18-crown-6 lariat ethers (ionophores) and "green" (cf. coumarin unit in 1) or "red" (cf. nile red unit in 2) fluorescent moieties (fluorophores). The fluorescent probes 1 and 2 show K+ induced fluorescence enhancement factors of 4.1 for 1 and 1.9 for 2 and dissociation constants for the corresponding K+ complexes of 43 mM (1+K+) and 18 mM (2+K+) in buffered aqueous solution. The fluorescence signal of 1 and 2 is changed by less than 5 % by pH values in the range of 6.8 to 8.8. Thus, 1 and 2 are capable fluorescent tools to determine extracellular K+ levels by fluorescence enhancements at wavelengths higher than 500 nm. KW - potassium KW - sodium KW - fluorescence KW - selectivity KW - probes Y1 - 2020 U6 - https://doi.org/10.1002/slct.202003785 SN - 2365-6549 VL - 5 IS - 42 SP - 13174 EP - 13178 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Müller, Holger A1 - Ast, Sandra A1 - Steinbrück, Dörte A1 - Eidner, Sascha A1 - Geißler, Felix A1 - Kumke, Michael Uwe A1 - Holdt, Hans-Jürgen ED - Kumke, Michael Uwe T1 - Fluorescence lifetime-based sensing of sodium by an optode JF - Chemical Communications N2 - We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1–10 mM by measuring reversible fluorescence decay time changes. KW - ion optodes KW - sensors KW - indicators KW - chromoionophore KW - ionophore KW - membrane KW - switches KW - systems KW - samples KW - green Y1 - 2014 SN - 0022-4936 SN - 0009-241X SP - 14167 EP - 14170 PB - The Royal Society Chemistry CY - Cambridge ER -