TY - GEN A1 - Tala, Mahdi A1 - Schrape, Oliver A1 - Krstić, Miloš A1 - Bertozzi, Davide T1 - Exploring the Performance-Energy Optimization Space of a Bridge Between 3D-Stacked Electronic and Optical Networks-on-Chip T2 - XXXIII Conference on Design of Circuits and Integrated Systems (DCIS) N2 - The relentless improvement of silicon photonics is making optical interconnects and networks appealing for use in miniaturized systems, where electrical interconnects cannot keep up with the growing levels of core integration due to bandwidth density and power efficiency limitations. At the same time, solutions such as 3D stacking or 2.5D integration open the door to a fully dedicated process optimization for the photonic die. However, an architecture-level integration challenge arises between the electronic network and the optical one in such tightly-integrated parallel systems. It consists of adapting signaling rates, matching the different levels of communication parallelism, handling cross-domain flow control, addressing re-synchronization concerns, and avoiding protocol-dependent deadlock. The associated energy and performance overhead may offset the inherent benefits of the emerging technology itself. This paper explores a hybrid CMOS-ECL bridge architecture between 3D-stacked technology-heterogeneous networks-on-chip (NoCs). The different ways of overcoming the serialization challenge (i.e., through an improvement of the signaling rate and/or through space-/wavelength division multiplexing options) give rise to a configuration space that the paper explores, in search for the most energy-efficient configuration for high-performance. Y1 - 2018 SN - 978-1-7281-0171-2 U6 - https://doi.org/10.1109/DCIS.2018.8681461 SN - 2471-6170 SN - 2640-5563 PB - IEEE CY - New York ER - TY - GEN A1 - Schrape, Oliver A1 - Balashov, Alexey A1 - Simevski, Aleksandar A1 - Benito, Carlos A1 - Krstić, Miloš T1 - Master-Clone placement with individual clock tree implementation BT - a Case on Physical Chip Design T2 - 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC) N2 - A hybrid design approach of the hierarchical physical implementation design flow is presented and demonstrated on a fault-tolerant low-power multiprocessor system. The proposed flow allows to implement selected submodules in parallel with contrary requirements such as identical placement and individual block implementation. The overall system contains four Leon2 cores and communicates via the Waterbear framework and supports Adaptive Voltage Scaling (AVS) functionality. Three of the processor core variants are derived from the first baseline reference core but implemented individually at block level based on their clock tree specification. The chip is prepared for space applications and designed with triple modular redundancy (TMR) for control parts. The low-power performance is enabled by contemporary power and clock management control. An ASIC is fabricated in a low-power 0.13 mu m BiCMOS technology process node. KW - Hierarchical Design KW - Physical Implementation KW - Clock Tree Implementation Y1 - 2018 SN - 978-1-5386-7656-1 PB - IEEE CY - New York ER - TY - JOUR A1 - Li, Yuanqing A1 - Chen, Li A1 - Nofal, Issam A1 - Chen, Mo A1 - Wang, Haibin A1 - Liu, Rui A1 - Chen, Qingyu A1 - Krstić, Miloš A1 - Shi, Shuting A1 - Guo, Gang A1 - Baeg, Sang H. A1 - Wen, Shi-Jie A1 - Wong, Richard T1 - Modeling and analysis of single-event transient sensitivity of a 65 nm clock tree JF - Microelectronics reliability N2 - The soft error rate (SER) due to heavy-ion irradiation of a clock tree is investigated in this paper. A method for clock tree SER prediction is developed, which employs a dedicated soft error analysis tool to characterize the single-event transient (SET) sensitivities of clock inverters and other commercial tools to calculate the SER through fault-injection simulations. A test circuit including a flip-flop chain and clock tree in a 65 nm CMOS technology is developed through the automatic ASIC design flow. This circuit is analyzed with the developed method to calculate its clock tree SER. In addition, this circuit is implemented in a 65 nm test chip and irradiated by heavy ions to measure its SER resulting from the SETs in the clock tree. The experimental and calculation results of this case study present good correlation, which verifies the effectiveness of the developed method. KW - Clock tree KW - Modeling KW - Single-event transient (SET) Y1 - 2018 U6 - https://doi.org/10.1016/j.microrel.2018.05.016 SN - 0026-2714 VL - 87 SP - 24 EP - 32 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Krstić, Miloš A1 - Jentzsch, Anne-Kristin T1 - Reliability, safety and security of the electronics in automated driving vehicles - joint lab lecturing approach T2 - 2018 12TH European Workshop on Microelectronics Education (EWME) N2 - This paper proposes an education approach for master and bachelor students to enhance their skills in the area of reliability, safety and security of the electronic components in automated driving. The approach is based on the active synergetic work of research institutes, academia and industry in the frame of joint lab. As an example, the jointly organized summer school with the respective focus is organized and elaborated. KW - reliability KW - safety KW - security KW - automated driving KW - joint lab Y1 - 2018 SN - 978-1-5386-1157-9 SP - 21 EP - 22 PB - IEEE CY - New York ER -