TY - JOUR A1 - Braunger, Steffen A1 - Mundt, Laura E. A1 - Wolff, Christian Michael A1 - Mews, Mathias A1 - Rehermann, Carolin A1 - Jost, Marko A1 - Tejada, Alvaro A1 - Eisenhauer, David A1 - Becker, Christiane A1 - Andres Guerra, Jorge A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Schubert, Martin C. A1 - Rech, Bernd A1 - Albrecht, Steve T1 - Cs(x)FA(1-x)Pb(l(1-y)Br(y))(3) Perovskite Compositions BT - the Appearance of Wrinkled Morphology and its Impact on Solar Cell Performance JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We report on the formation of wrinkle-patterned surface morphologies in cesium formamidinium-based Cs(x)FA(1-y)Pb(I1-yBry)(3) perovskite compositions with x = 0-0.3 and y = 0-0.3 under various spin-coating conditions. By varying the Cs and Br contents, the perovskite precursor solution concentration and the spin-coating procedure, the occurrence and characteristics of the wrinkle-shaped morphology can be tailored systematically. Cs(0.17)FA(0.83)Pb(I0.83Br0.17)(3) perovskite layers were analyzed regarding their surface roughness, microscopic structure, local and overall composition, and optoelectronic properties. Application of these films in p-i-n perovskite solar cells (PSCs) with indium-doped tin oxide/NiOx/perovskite/C-60/bathocuproine/Cu architecture resulted in up to 15.3 and 17.0% power conversion efficiency for the flat and wrinkled morphology, respectively. Interestingly, we find slightly red-shifted photoluminescence (PL) peaks for wrinkled areas and we are able to directly correlate surface topography with PL peak mapping. This is attributed to differences in the local grain size, whereas there is no indication for compositional demixing in the films. We show that the perovskite composition, crystallization kinetics, and layer thickness strongly influence the formation of wrinkles which is proposed to be related to the release of compressive strain during perovskite crystallization. Our work helps us to better understand film formation and to further improve the efficiency of PSCs with widely used mixed-perovskite compositions. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b06459 SN - 1932-7447 SN - 1932-7455 VL - 122 IS - 30 SP - 17123 EP - 17135 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Saliba, Michael A1 - Correa-Baena, Juan-Pablo A1 - Wolff, Christian Michael A1 - Stolterfoht, Martin A1 - Phung, Thi Thuy Nga A1 - Albrecht, Steve A1 - Neher, Dieter A1 - Abate, Antonio T1 - How to Make over 20% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures JF - Chemistry of materials : a publication of the American Chemical Society N2 - Perovskite solar cells (PSCs) are currently one of the most promising photovoltaic technologies for highly efficient and cost-effective solar energy production. In only a few years, an unprecedented progression of preparation procedures and material compositions delivered lab-scale devices that have now reached record power conversion efficiencies (PCEs) higher than 20%, competing with most established solar cell materials such as silicon, CIGS, and CdTe. However, despite a large number of researchers currently involved in this topic, only a few groups in the world can reproduce >20% efficiencies on a regular n-i-p architecture. In this work, we present detailed protocols for preparing PSCs in regular (n-i-p) and inverted (p-i-n) architectures with >= 20% PCE. We aim to provide a comprehensive, reproducible description of our device fabrication , protocols. We encourage the practice of reporting detailed and transparent protocols that can be more easily reproduced by other laboratories. A better reporting standard may, in turn, accelerate the development of perovskite solar cells and related research fields. Y1 - 2018 U6 - https://doi.org/10.1021/acs.chemmater.8b00136 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 13 SP - 4193 EP - 4201 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kurpiers, Jona A1 - Ferron, Thomas A1 - Roland, Steffen A1 - Jakoby, Marius A1 - Thiede, Tobias A1 - Jaiser, Frank A1 - Albrecht, Steve A1 - Janietz, Silvia A1 - Collins, Brian A. A1 - Howard, Ian A. A1 - Neher, Dieter T1 - Probing the pathways of free charge generation in organic bulk heterojunction solar cells JF - Nature Communications N2 - The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-04386-3 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Zhang, Shanshan A1 - Hages, Charles J. A1 - Rothhardt, Daniel A1 - Albrecht, Steve A1 - Burn, Paul L. A1 - Meredith, Paul A1 - Unold, Thomas A1 - Neher, Dieter T1 - Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells JF - Nature Energy N2 - The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81%). KW - Energy science and technology KW - Solar cells Y1 - 2018 U6 - https://doi.org/10.1038/s41560-018-0219-8 SN - 2058-7546 VL - 3 IS - 10 SP - 847 EP - 854 PB - Nature Publ. Group CY - London ER -