TY - THES A1 - Riedel, Marc T1 - Photonic wiring of enzymatic reactions to photoactive entities for the construction of biohybrid electrodes T1 - Photonische Kontaktierung von enzymatischen Reaktionen mit photoaktiven Entitäten für den Aufbau von biohybriden Elektroden N2 - In this work, different strategies for the construction of biohybrid photoelectrodes are investigated and have been evaluated according to their intrinsic catalytic activity for the oxidation of the cofactor NADH or for the connection with the enzymes PQQ glucose dehydrogenase (PQQ-GDH), FAD-dependent glucose dehydrogenase (FAD-GDH) and fructose dehydrogenase (FDH). The light-controlled oxidation of NADH has been analyzed with InGaN/GaN nanowire-modified electrodes. Upon illumination with visible light the InGaN/GaN nanowires generate an anodic photocurrent, which increases in a concentration-dependent manner in the presence of NADH, thus allowing determination of the cofactor. Furthermore, different approaches for the connection of enzymes to quantum dot (QD)-modified electrodes via small redox molecules or redox polymers have been analyzed and discussed. First, interaction studies with diffusible redox mediators such as hexacyanoferrate(II) and ferrocenecarboxylic acid have been performed with CdSe/ZnS QD-modified gold electrodes to build up photoelectrochemical signal chains between QDs and the enzymes FDH and PQQ-GDH. In the presence of substrate and under illumination of the electrode, electrons are transferred from the enzyme via the redox mediators to the QDs. The resulting photocurrent is dependent on the substrate concentration and allows a quantification of the fructose and glucose content in solution. A first attempt with immobilized redox mediator, i.e. ferrocenecarboxylic acid chemically coupled to PQQ-GDH and attached to QD-modified gold electrodes, reveal the potential to build up photoelectrochemical signal chains even without diffusible redox mediators in solution. However, this approach results in a significant deteriorated photocurrent response compared to the situation with diffusing mediators. In order to improve the photoelectrochemical performance of such redox mediator-based, light-switchable signal chains, an osmium complex-containing redox polymer has been evaluated as electron relay for the electronic linkage between QDs and enzymes. The redox polymer allows the stable immobilization of the enzyme and the efficient wiring with the QD-modified electrode. In addition, a 3D inverse opal TiO2 (IO-TiO2) electrode has been used for the integration of PbS QDs, redox polymer and FAD-GDH in order to increase the electrode surface. This results in a significantly improved photocurrent response, a quite low onset potential for the substrate oxidation and a broader glucose detection range as compared to the approach with ferrocenecarboxylic acid and PQQ-GDH immobilized on CdSe/ZnS QD-modified gold electrodes. Furthermore, IO-TiO2 electrodes are used to integrate sulfonated polyanilines (PMSA1) and PQQ-GDH, and to investigate the direct interaction between the polymer and the enzyme for the light-switchable detection of glucose. While PMSA1 provides visible light excitation and ensures the efficient connection between the IO-TiO2 electrode and the biocatalytic entity, PQQ-GDH enables the oxidation of glucose. Here, the IO-TiO2 electrodes with pores of approximately 650 nm provide a suitable interface and morphology, which is required for a stable and functional assembly of the polymer and enzyme. The successful integration of the polymer and the enzyme can be confirmed by the formation of a glucose-dependent anodic photocurrent. In conclusion, this work provides insights into the design of photoelectrodes and presents different strategies for the efficient coupling of redox enzymes to photoactive entities, which allows for light-directed sensing and provides the basis for the generation of power from sun light and energy-rich compounds. N2 - In dieser Arbeit werden verschiedene Strategien für den Aufbau biohybrider Photoelektroden untersucht und hinsichtlich ihrer intrinsischen katalytischen Aktivität für die Oxidation des Kofaktors NADH oder für die Kontaktierung mit den Enzymen PQQ Glukosedehydrogenase (PQQ-GDH), FAD-abhängige Glukosedehydrogenase (FAD-GDH) und Fruktosedehydrogenase (FDH) evaluiert. Der Licht-gesteuerten Nachweis von NADH wurde mittels InGaN/GaN Nanodraht-modifizierten Elektroden untersucht. Bei Beleuchtung mit sichtbarem Licht generieren die InGaN/GaN Nanodrähte einen anodischen Photostrom, welcher in der Anwesenheit von NADH konzentrationsabhängig ansteigt und somit eine Bestimmung des Kofaktors erlaubt. Des Weiteren werden verschiedene Ansätze für die Kontaktierung von Enzymen mit Quantum Dot (QD)-modifizierten Elektroden unter Verwendung von kleinen Redoxmolekülen oder Redoxpolymeren analysiert und diskutiert. Zunächst wurden Interaktionsstudien mit den Redoxmediatoren Kaliumhexacyanoferrat(II) und Ferrocencarbonsäure in Lösung an CdSe/ZnS QD-modifizierten Goldelektroden durchgeführt um darauf aufbauend photoelektrochemische Signalketten zwischen QDs und den Enzymen FDH und PQQ-GDH aufzubauen und für den Nachweis von Fruktose und Glukose zu nutzen. In Anwesenheit von Substrat und unter Beleuchtung der Elektrode werden Elektronen von dem Enzym über die Redoxmediatoren zu den QDs übertragen. Der daraus resultierende Photostrom ist abhängig von der Substratkonzentration und erlaubt eine Bestimmung des Fruktose- und Glukosegehalts in Lösung. Ein erster Ansatz mit immobilisierten Redoxmediatoren, d.h. Ferrocencarbonsäure kovalent an PQQ-GDH gebunden und auf QD-modifizierten Goldelektroden immobilisiert, zeigt das Potential photoelektrochemische Signalketten auch ohne Redoxmediatoren in Lösung aufzubauen. Jedoch resultierte dieser Ansatz in einer deutlichen Verschlechterung der Photostromantwort im Vergleich zum Ansatz mit Mediatoren in Lösung. Um die photoelektrochemische Leistungsfähigkeit Redoxmediator-basierter, Licht-schaltbarer Signalketten zu verbessern, wurde ein Osmiumkomplex-Redoxpolymer für die elektronische Kontaktierung zwischen QDs und Enzymen untersucht. Das Redoxpolymer erlaubt eine stabile Immobilisierung des Enzymes und eine effiziente Kontaktierung mit der QD-modifizierten Elektrode. Zusätzlich wurde eine 3D „inverse opale“ TiO2 (IO-TiO2) Elektrode für die Integration der PbS QDs, des Redoxpolymers und der FAD-GDH verwendet um die Elektrodenoberfläche zu vergrößern. Dies führt zu einer deutlich verbesserten Leistungsfähigkeit hinsichtlich der Photostromantwort, des Startpotentials für die Substratoxidation und des Nachweisbereiches für Glukose im Vergleich zu dem Ansatz mit Ferrocencarbonsäure und PQQ-GDH immobilisiert auf CdSe/ZnS QD-modifizierten Goldelektroden. Des Weiteren wurden IO-TiO2 Elektroden verwendet um sulfonierte Polyaniline (PMSA1) und PQQ-GDH zu integrieren und die direkte Interaktion zwischen dem Polymer und dem Enzym für den Licht-schaltbaren Nachweis von Glukose zu untersuchen. Während PMSA1 eine Anregung mit sichtbaren Licht ermöglicht und die effiziente Verbindung zwischen der IO-TiO2-Elektrode und der biokatalytischen Einheit sicherstellt, ermöglicht die PQQ-GDH die Oxidation von Glukose. Hierbei bieten die IO-TiO2-Elektroden mit Poren von ca. 650 nm eine geeignete Schnittstelle und Morphologie, welche für eine stabile und funktionelle Assemblierung des Polymers und Enzyms benötigt wird. Die erfolgreiche Integration des Polymers und des Enzyms kann durch die Ausbildung eines Glukose-abhängigen anodischen Photostroms bestätigt werden. Zusammenfassend gibt diese Arbeit Einblicke in den Aufbau von Photoelektroden und präsentiert verschiedene, effiziente Kopplungsstrategien zwischen Redoxenzymen und photoaktiven Komponenten, welche einen Licht-gesteuerten Nachweis von Analyten ermöglichen und die Grundlage für die Energieerzeugung aus Licht und energiereichen Verbindungen bilden. KW - biocatalysis KW - photocatalysis KW - quantum dots KW - photoelectrochemical sensor KW - enzymes KW - Biokatalyse KW - Photokatalyse KW - Quantum Dots KW - Photoelektrchemischer Sensor KW - Enzyme Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417280 ER - TY - THES A1 - Li, Lina T1 - Preparation of novel photoactive materials T1 - Herstellung von neuen photoaktiven Materialien BT - different pre-compositions, post-modifications and improved performance BT - verschiedene Vorzusammensetzungen, Post-Modifikationen und verbesserte Leistung N2 - Photocatalysis is considered significant in this new energy era, because the inexhaustibly abundant, clean, and safe energy of the sun can be harnessed for sustainable, nonhazardous, and economically development of our society. In the research of photocatalysis, the current focus was held by the design and modification of photocatalyst. As one of the most promising photocatalysts, g-C3N4 has gained considerable attention for its eye-catching properties. It has been extensively explored in photocatalysis applications, such as water splitting, organic pollutant degradation, and CO2 reduction. Even so, it also has its own drawbacks which inhibit its further application. Inspired by that, this thesis will mainly present and discuss the process and achievement on the preparation of some novel photocatalysts and their photocatalysis performance. These materials were all synthesized via the alteration of classic g-C3N4 preparation method, like using different pre-compositions for initial supramolecular complex and functional group post-modification. By taking place of cyanuric acid, 2,5-Dihydroxy-1,4-benzoquinone and chloranilic acid can form completely new supramolecular complex with melamine. After heating, the resulting products of the two complex shown 2D sheet-like and 1D fiber-like morphologies, respectively, which maintain at even up to high temperature of 800 °C. These materials cover crystals, polymers and N-doped carbons with the increase of synthesis temperature. Based on their different pre-compositions, they show different dye degradation performances. For CLA-M-250, it shows the highest photocatalytic activity and strong oxidation capacity. It shows not only great photo-performance in RhB degradation, but also oxygen production in water splitting. In the post-modification method, a novel photocatalysis solution was proposed to modify carbon nitride scaffold with cyano group, whose content can be well controlled by the input of sodium thiocyanate. The cyanation modification leads to narrowed band gap as well as improved photo-induced charges separation. Cyano group grafted carbon nitride thus shows dramatically enhanced performance in the photocatalytic coupling reaction between styrene and sodium benzenesulfinate under green light irradiation, which is in stark contrast with the inactivity of pristine g-C3N4. N2 - Die Sonne stellt eine Quelle für unerschöpfliche, saubere und sichere Energie dar, die für eine nachhaltige, ungefährliche und ökonomische Entwicklung unserer Gesellschaft genutzt werden kann, daher wird Photokatalyse heutzutage als äußerst vielversprechend angesehen. Bei der Erforschung der Photokatalyse lag der Fokus auf dem Design und der Modifizierung von Photokatalysatoren. Als einer der vielversprechendsten Photokatalysatoren hat sich g-C3N4 erwiesen. Es wurde ausführlich für Anwendungen wie z.B. Wasserspaltung, den Abbau organischer Schadstoffe und CO2-Reduktion untersucht. Trotzdem hat es auch Nachteile, die eine weitere Anwendung erschweren. Deshalb wird in dieser Arbeit hauptsächlich die Herstellung und Eigenschaften von neuartigen auf auf g-C3N4 basierenden Photokatalysatoren vorgestellt und diskutiert. Diese Materialien wurden mittels Verfahren hergestellt, bei denen die klassische g-C3N4-Herstellungsmethode geändert wurde, wie z.B. durch die Verwendung unterschiedlicher Zusammensetzungen und durch die Modifizierung von funktionellen Gruppen. Im Vergleich zu g-C3N4 weisen diese neu hergestellten Materialien unterschiedliche photokatalytische Eigenschaften auf. KW - photocatalysis KW - Photokatalyse KW - CN materials KW - CN-Materialien KW - supramolecular KW - Supramolekular KW - post-modification KW - Post-Modifikationen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410952 ER -