TY - JOUR A1 - Zimmermann, Marc A1 - Grigoriev, Dmitry A1 - Puretskiy, Nikolay A1 - Böker, Alexander T1 - Characteristics of microcontact printing with polyelectrolyte ink for the precise preparation of patches on silica particles JF - RSC Advances N2 - This publication demonstrates the abilities of a precise and straightforward microcontact printing approach for the preparation of patchy silica particles. In a broad particle size range, it is possible to finely tune the number and parameters of three-dimensional patches like diameter and thickness using only polyethyleneimine ink, poly(dimethoxysilane) as stamp material and a suitable release solvent. Y1 - 2018 U6 - https://doi.org/10.1039/c8ra07955b SN - 2046-2069 VL - 8 IS - 69 SP - 39241 EP - 39247 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Weber, Andreas P. M. A1 - Oesterhelt, Christine A1 - Gross, Wolfgang A1 - Bräutigam, Andrea A1 - Imboden, Lori A1 - Krassovskaya, Inga A1 - Linka, Nicole A1 - Truchina, Julia A1 - Schneidereit, Jörg A1 - Voll, Lars A1 - Zimmermann, Marc A1 - Jamai, Aziz A1 - Riekhof, Wayne A1 - Yu, Bin A1 - Garavito, Michael R. A1 - Benning, Christoph T1 - EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts N2 - When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degreesC. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria, 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria Y1 - 2004 ER - TY - JOUR A1 - Zimmermann, Marc A1 - John, Daniela A1 - Grigoriev, Dmitry A1 - Puretskiy, Nikolay A1 - Böker, Alexander T1 - From 2D to 3D patches on multifunctional particles BT - how microcontact printing creates a new dimension of functionality JF - Soft matter N2 - A straightforward approach for the precise multifunctional surface modification of particles with three-dimensional patches using microcontact printing is presented. By comparison to previous works it was possible to not only control the diameter, but also to finely tune the thickness of the deposited layer, opening up the way for three-dimensional structures and orthogonal multifunctionality. The use of PEI as polymeric ink, PDMS stamps for microcontact printing on silica particles and the influence of different solvents during particle release on the creation of functional particles with three-dimensional patches are described. Finally, by introducing fluorescent properties by incorporation of quantum dots into patches and by particle self-assembly via avidin-biotin coupling, the versatility of this novel modification method is demonstrated. Y1 - 2018 U6 - https://doi.org/10.1039/c8sm00163d SN - 1744-683X SN - 1744-6848 VL - 14 IS - 12 SP - 2301 EP - 2309 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - John, Daniela A1 - Zimmermann, Marc A1 - Böker, Alexander T1 - Generation of 3-dimensional multi-patches on silica particles via printing with wrinkled stamps JF - Soft matter N2 - A simple route towards patchy particles with anisotropic patches with respect to a different functionality and directionality is presented. This method is based on microcontact printing of positively charged polyethylenimine (PEI) on silica particles using wrinkled stamps. Due to the wrinkled surface, the number of patches on the particles as well as the distance between two patches can be controlled. Y1 - 2018 U6 - https://doi.org/10.1039/c8sm00224j SN - 1744-683X SN - 1744-6848 VL - 14 IS - 16 SP - 3057 EP - 3062 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zimmermann, Marc A1 - Stomps, Benjamin René Harald A1 - Schulte-Osseili, Christine A1 - Grigoriev, Dmitry A1 - Ewen, Dirk A1 - Morgan, Andrew A1 - Böker, Alexander T1 - Organic dye anchor peptide conjugates as an advanced coloring agent for polypropylene yarn JF - Textile Research Journal N2 - Polypropylene as one of the world's top commodity polymers is also widely used in the textile industry. However, its non-polar nature and partially crystalline structure significantly complicate the process of industrial coloring of polypropylene. Currently, textiles made of polypropylene or with a significant proportion of polypropylene are dyed under quite harsh conditions, including the use of high pressures and temperatures, which makes this process energy intensive. This research presents a three-step synthesis of coloring agents, capable of adhering onto synthetic polypropylene yarns without harsh energy-consuming conditions. This is possible by encapsulation of organic pigments using trimethoxyphenylsilane, introduction of surface double bonds via modification of the silica shell with trimethoxysilylpropylmethacrylate and final attachment of highly adhesive anchor peptides using thiol-ene chemistry. We demonstrate the applicability of this approach by dyeing polypropylene yarns in a simple process under ambient conditions after giving a step-by-step guide for the synthesis of these new dyeing agents. Finally, the successful dyeing of the yarns is visualized, and its practicability is discussed. KW - anchor peptides KW - organic dye pigments KW - coloring agents KW - polypropylene KW - yarns Y1 - 2020 U6 - https://doi.org/10.1177/0040517520932231 SN - 0040-5175 SN - 1746-7748 VL - 91 IS - 1-2 SP - 28 EP - 39 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Leiendecker, Mai-Thi A1 - Licht, Christopher J. A1 - Borghs, Jannik A1 - Mooney, David J. A1 - Zimmermann, Marc A1 - Böker, Alexander T1 - Physical polyurethane hydrogels via charge shielding through acids or salts JF - Macromolecular rapid communications N2 - Physical hydrogels with tunable stress-relaxation and excellent stress recovery are formed from anionic polyurethanes via addition of acids, monovalent salts, or divalent salts. Gel properties can be widely adjusted through pH, salt valence, salt concentration, and monomer composition. We propose and investigate a novel gelation mechanism based on a colloidal system interacting through charge repulsion and chrage shielding, allowing a broad use of the material, from acidic (pH 4–5.5) to pH-neutral hydrogels with Young's moduli ranging from 10 to 140 kPa. KW - acidic crosslinking KW - charge repulsion KW - charge shielding KW - ionic crosslinking KW - physical hydrogels KW - polyurethanes KW - stress recovery KW - stress-relaxation Y1 - 2018 U6 - https://doi.org/10.1002/marc.201700711 SN - 1022-1336 SN - 1521-3927 VL - 39 IS - 7 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kathrein, Christine C. A1 - Pester, Christian A1 - Ruppel, Markus A1 - Jung, Maike A1 - Zimmermann, Marc A1 - Böker, Alexander T1 - Reorientation mechanisms of block copolymer/CdSe quantum dot composites under application of an electric field JF - Soft matter N2 - Time- and temperature-resolved in situ birefringence measurements were applied to analyze the effect of nanoparticles on the electric field-induced alignment of a microphase separated solution of poly(styrene)-block-poly(isoprene) in toluene. Through the incorporation of isoprene-confined CdSe quantum dots the reorientation behavior is altered. Particle loading lowers the order-disorder transition temperature, and increases the defect density, favoring nucleation and growth as an alignment mechanism over rotation of grains. The temperature dependent alteration in the reorientation mechanism is analyzed via a combination of birefringence and synchrotron SAXS. The detailed understanding of the effect of nanoparticles on the reorientation mechanism is an important prerequisite for optimization of electricfield-induced alignment of block copolymer/nanoparticle composites where the block copolymer guides the nanoparticle self-assembly into anisotropic structures. Y1 - 2016 U6 - https://doi.org/10.1039/c6sm01073c SN - 1744-683X SN - 1744-6848 VL - 12 SP - 8417 EP - 8424 PB - Royal Society of Chemistry CY - Cambridge ER -