TY - GEN A1 - Höfer, Chris Tina A1 - Di Lella, Santiago A1 - Dahmani, Ismail A1 - Jungnick, Nadine A1 - Bordag, Natalie A1 - Bobone, Sara A1 - Huan, Q. A1 - Keller, S. A1 - Herrmann, A. A1 - Chiantia, Salvatore T1 - Corrigendum to: Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes (Biochimica et Biophysica Acta (BBA) - Biomembranes. - 1861, (2019), pg 1123-1134) T2 - Biochimica et biophysica acta : Biomembranes Y1 - 2019 U6 - https://doi.org/10.1016/j.bbamem.2019.07.002 SN - 0005-2736 SN - 1879-2642 VL - 1861 IS - 10 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Dahmani, Ismail A1 - Ludwig, Kai A1 - Chiantia, Salvatore T1 - Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The matrix protein M1 of the Influenza A virus (IAV) is supposed to mediate viral assembly and budding at the plasma membrane (PM) of infected cells. In order for a new viral particle to form, the PM lipid bilayer has to bend into a vesicle toward the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. In the present study, we use a combination of fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), cryo-electron tomography (cryo-ET) and scanning fluorescence correlation spectroscopy (sFCS) to investigate M1-induced membrane deformation in biophysical models of the PM. Our results indicate that M1 is indeed able to cause membrane curvature in lipid bilayers containing negatively charged lipids, in the absence of other viral components. Furthermore, we prove that protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1–M1 interactions and multimer formation are required in order to alter the bilayer three-dimensional structure, through the formation of a protein scaffold. Finally, our results suggest that, in a physiological context,M1-induced membrane deformation might be modulated by the initial bilayer curvature and the lateral organization of membrane components (i.e. the presence of lipid domains). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 768 KW - confocal microscopy KW - influenza KW - lipid membranes KW - membranes KW - protein-protein interactions KW - viral matrix proteins Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438689 SN - 1866-8372 IS - 768 ER - TY - JOUR A1 - Dahmani, Ismail A1 - Ludwig, Kai A1 - Chiantia, Salvatore T1 - Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization JF - Bioscience Reports N2 - The matrix protein M1 of the Influenza A virus (IAV) is supposed to mediate viral assembly and budding at the plasma membrane (PM) of infected cells. In order for a new viral particle to form, the PM lipid bilayer has to bend into a vesicle toward the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. In the present study, we use a combination of fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), cryo-electron tomography (cryo-ET) and scanning fluorescence correlation spectroscopy (sFCS) to investigate M1-induced membrane deformation in biophysical models of the PM. Our results indicate that M1 is indeed able to cause membrane curvature in lipid bilayers containing negatively charged lipids, in the absence of other viral components. Furthermore, we prove that protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1–M1 interactions and multimer formation are required in order to alter the bilayer three-dimensional structure, through the formation of a protein scaffold. Finally, our results suggest that, in a physiological context,M1-induced membrane deformation might be modulated by the initial bilayer curvature and the lateral organization of membrane components (i.e. the presence of lipid domains). KW - confocal microscopy KW - influenza KW - lipid membranes KW - membranes KW - protein-protein interactions KW - viral matrix proteins Y1 - 2019 U6 - https://doi.org/10.1042/BSR20191024 SN - 0144-8463 SN - 1573-4935 VL - 39 IS - 8 PB - Portland Press CY - Colchester ER - TY - JOUR A1 - Höfer, C. T. A1 - Di Lella, S. A1 - Dahmani, Ismail A1 - Jungnick, N. A1 - Bordag, N. A1 - Bobone, Sara A1 - Huang, Q. A1 - Keller, S. A1 - Herrmann, A. A1 - Chiantia, Salvatore T1 - Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes JF - Biochimica et biophysica acta : Biomembranes N2 - Influenza A virus is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. One of the ten major proteins encoded by the viral genome, the matrix protein M1, is abundantly produced in infected cells and plays a structural role in determining the morphology of the virus. During assembly of new viral particles, M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. The structure of M1 is only partially known. In particular, structural details of M1 interactions with the cellular plasma membrane as well as M1 protein interactions and multimerization have not been clarified, yet. In this work, we employed a set of complementary experimental and theoretical tools to tackle these issues. Using raster image correlation, surface plasmon resonance and circular dichroism spectroscopies, we quantified membrane association and oligomerization of full-length M1 and of different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region, residues 95-105). Furthermore, we report novel information on structural changes in M1 occurring upon binding to membranes. Our experimental results are corroborated by an all-atom model of the full-length M1 protein bound to a negatively charged lipid bilayer. KW - Virus assembly KW - Protein-lipid interaction KW - Fluorescence microscopy KW - SPR KW - CD spectroscopy KW - Influenza A virus Y1 - 2019 U6 - https://doi.org/10.1016/j.bbamem.2019.03.013 SN - 0005-2736 SN - 1879-2642 VL - 1861 IS - 6 SP - 1123 EP - 1134 PB - Elsevier CY - Amsterdam ER -