TY - JOUR A1 - Smith, Adam G. G. A1 - Fox, Matthew A1 - Schwanghart, Wolfgang A1 - Carter, Andrew T1 - Comparing methods for calculating channel steepness index JF - Earth science reviews : the international geological journal bridging the gap between research articles and textbooks N2 - Channel steepness index, k(s), is a metric derived from the stream power model that, under certain conditions, scales with relative rock uplift rate. Channel steepness index is a property of rivers, which can be relatively easily extracted from digital elevation models (DEMs). As DEM data sets are widely available for Earth and are becoming more readily available for other planetary bodies, channel steepness index represents a powerful tool for interpreting tectonic processes. However, multiple approaches to calculate channel steepness index exist. From this several important questions arise; does choice of approach change the values of channel steepness index, can values be so different that choice of approach can influence the findings of a study, and are certain approaches better than others? With the aid of a synthetic river profile and a case study from the Sierra Nevada, California, we show that values of channel steepness index vary over orders of magnitude according to the methodology used in the calculation. We explore the limitations, advantages and disadvantages of the key approaches to calculating channel steepness index, and find that choosing an appropriate approach relies on the context of a study. Given these observations, it is important that authors acknowledge the methodology used to calculate channel steepness index, to ensure that results can be contextualised and reproduced. KW - Channel steepness index KW - Fluvial geomorphology KW - Rivers KW - Tectonics KW - Geomorphology KW - Digital elevation models KW - Sierra nevada Y1 - 2022 U6 - https://doi.org/10.1016/j.earscirev.2022.103970 SN - 0012-8252 SN - 1872-6828 VL - 227 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Blayney, Tamsin A1 - Najman, Yani A1 - Dupont-Nivet, Guillaume A1 - Carter, Andrew A1 - Millar, Ian A1 - Garzanti, Eduardo A1 - Sobel, Edward A1 - Rittner, Martin A1 - Ando, Sergio A1 - Guo, Zhaojie A1 - Vezzoli, Giovanni T1 - Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim basin sedimentary record JF - Tectonics N2 - The Pamirs represent the indented westward continuation of the northern margin of the Tibetan Plateau, dividing the Tarim and Tajik basins. Their evolution may be a key factor influencing aridification of the Asian interior, yet the tectonics of the Pamir Salient are poorly understood. We present a provenance study of the Aertashi section, a Paleogene to late Neogene clastic succession deposited in the Tarim basin to the north of the NW margin of Tibet (the West Kunlun) and to the east of the Pamirs. Our detrital zircon U-Pb ages coupled with zircon fission track, bulk rock Sm-Nd, and petrography data document changes in contributing source terranes during the Oligocene to Miocene, which can be correlated to regional tectonics. We propose a model for the evolution of the Pamir and West Kunlun (WKL), in which the WKL formed topography since at least similar to 200 Ma. By similar to 25 Ma, movement along the Pamir-bounding faults such as the Kashgar-Yecheng Transfer System had commenced, marking the onset of Pamir indentation into the Tarim-Tajik basin. This is coincident with basinward expansion of the northern WKL margin, which changed the palaeodrainage pattern within the Kunlun, progressively cutting off the more southerly WKL sources from the Tarim basin. An abrupt change in the provenance and facies of sediments at Aertashi has a maximum age of 14 Ma; this change records when the Pamir indenter had propagated sufficiently far north that the North Pamir was now located proximal to the Aertashi region. Y1 - 2016 U6 - https://doi.org/10.1002/2016TC004222 SN - 0278-7407 SN - 1944-9194 VL - 35 SP - 2345 EP - 2369 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Zhang, Peng A1 - Najman, Yani A1 - Mei, Lianfu A1 - Millar, Ian A1 - Sobel, Edward A1 - Carter, Andrew A1 - Barfod, Dan A1 - Dhuime, Bruno A1 - Garzanti, Eduardo A1 - Govin, Gwladys A1 - Vezzoli, Giovanni A1 - Hu, Xiaolin T1 - Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics JF - Earth science reviews N2 - A number of sedimentary provenance studies have been undertaken in order to determine whether the palaeo-Red River was once a river of continental proportions into which the upper reaches of the Yangtze, Salween, Mekong, Irrawaddy, and Yarlung drained. We have assessed the evidence that the Yarlung originally flowed into the palaeo-Red river, and then sequentially into the Irrawaddy and Brahmaputra, connecting to the latter first via the Lohit and then the Siang. For this river system, we have integrated our new data from the Paleogene-Recent Irrawaddy drainage basin (detrital zircon U-Pb with Hf and fission track, rutile U-Pb, mica Ar-Ar, bulk rock Sr-Nd, and petrography) with previously published data, to produce a palaeodrainage model that is consistent with all datasets. In our model, the Yarlung never flowed into the Irrawaddy drainage: during the Paleogene, the Yarlung suture zone was an internally drained basin, and from Neogene times onwards the Yarlung drained into the Brahmaputra in the Bengal Basin. The Central Myanmar Basin, through which the Irrawaddy River flows today, received predominantly locally-derived detritus until the Middle Eocene, the Irrawaddy initiated as a through-going river draining the Mogok Metamorphic Belt and Bomi-Chayu granites to the north sometime in the Late Eocene to Early Oligocene, and the river was dominated by a stable MMB-dominated drainage throughout the Neogene to present day. Existing evidence does not support any connection between the Yarlung and the Red River in the past, but there is a paucity of suitable palaeo-Red River deposits with which to make a robust comparison. We argue that this limitation also precludes a robust assessment of a palaeo-connection between the Yangtze/ Salween/Mekong and the Red River; it is difficult to unequivocally interpret the recorded provenance changes as the result of specific drainage reorganisations. We highlight the palaeo-Red River deposits of the Hanoi Basin as a potential location for future research focus in view of the near-complete Cenozoic record of palaeo-Red River deposits at this location. A majority of previous studies consider that if a major continental-scale drainage ever existed at all, it fragmented early in the Cenozoic. Such a viewpoint would agree with the growing body of evidence from palaeoaltitude studies that large parts of SE Tibet were uplifted by this period. This then leads towards the intriguing question as to the mechanisms which caused the major period of river incision in the Miocene in this region. KW - Eastern Tibet KW - Palaeodrainage KW - Red River KW - Irrawaddy River KW - Yarlung Tsangpo KW - Central Myanmar Basin Y1 - 2019 U6 - https://doi.org/10.1016/j.earscirev.2019.02.003 SN - 0012-8252 SN - 1872-6828 VL - 192 SP - 601 EP - 630 PB - Elsevier CY - Amsterdam ER -