TY - JOUR A1 - Schöller, Markus A1 - Hubrig, Swetlana A1 - Fossati, L. A1 - Carroll, Thorsten Anthony A1 - Briquet, Maryline A1 - Oskinova, Lida A1 - Järvinen, S. A1 - Ilyin, Ilya A1 - Castro, N. A1 - Morel, T. A1 - Langer, N. A1 - Przybilla, N. A1 - Nieva, M. -F. A1 - Kholtygin, A. F. A1 - Sana, H. A1 - Herrero, A. A1 - Barba, R. H. A1 - de Koter, A. T1 - B fields in OB stars (BOB) BT - Concluding the FORS2 observing campaign JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. The B fields in OB stars (BOB) Collaboration is based on an ESO Large Programme to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. Methods. In the framework of this program, we carried out low-resolution spectropolarimetric observations of a large sample of massive stars using FORS2 installed at the ESO VLT 8m telescope. Results. We determined the magnetic field values with two completely independent reduction and analysis pipelines. Our in-depth study of the magnetic field measurements shows that differences between our two pipelines are usually well within 3 sigma errors. From the 32 observations of 28 OB stars, we were able to monitor the magnetic fields in CPD -57 degrees 3509 and HD164492C, confirm the magnetic field in HD54879, and detect a magnetic field in CPD -62 degrees 2124. We obtain a magnetic field detection rate of 6 +/- 3% for the full sample of 69 OB stars observed with FORS 2 within the BOB program. For the preselected objects with a nu sin i below 60 km s(-1), we obtain a magnetic field detection rate of 5 +/- 5%. We also discuss X-ray properties and multiplicity of the objects in our FORS2 sample with respect to the magnetic field detections. KW - polarization KW - stars: early-type KW - stars: magnetic field KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201628905 SN - 1432-0746 VL - 599 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer A1 - Todt, Helge Tobias A1 - Hainich, Rainer A1 - Shenar, Tomer T1 - Coupling hydrodynamics with comoving frame radiative transfer I. A unified approach for OB and WR stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims. We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (nonLTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods. Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results. The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant zeta Pup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions. For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard beta-law occur. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: early-type KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730642 SN - 1432-0746 VL - 603 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ramachandran, Varsha A1 - Hainich, Rainer A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Shenar, T. A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias A1 - Gallagher, John S. T1 - Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims. We aim to estimate stellar and wind parameters of all OB stars in N206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods. We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results. The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. Conclusions. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N206 superbubble as measured from the observed X-ray and H alpha emission. KW - stars: early-type KW - Magellanic Clouds KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731093 SN - 1432-0746 SN - 0004-6361 VL - 609 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Pillitteri, Ignazio A1 - Wolk, Scott J. A1 - Reale, Fabio A1 - Oskinova, Lida T1 - The early B-type star Rho Ophiuchi A is an X-ray lighthouse JF - Astronomy and astrophysics : an international weekly journal N2 - We present the results of a 140 ks XMM-Newton observation of the B2 star rho Oph A. The star has exhibited strong X-ray variability: a cusp-shaped increase of rate, similar to that which we partially observed in 2013, and a bright flare. These events are separated in time by about 104 ks, which likely correspond to the rotational period of the star (1.2 days). Time resolved spectroscopy of the X-ray spectra shows that the first event is caused by an increase of the plasma emission measure, while the second increase of rate is a major flare with temperatures in excess of 60 MK (kT similar to 5 keV). From the analysis of its rise, we infer a magnetic field of >= 300 G and a size of the flaring region of similar to 1.4-1.9 x 10(11) cm, which corresponds to similar to 25%-30% of the stellar radius. We speculate that either an intrinsic magnetism that produces a hot spot on its surface or an unknown low mass companion are the source of such X-rays and variability. A hot spot of magnetic origin should be a stable structure over a time span of >= 2.5 yr, and suggests an overall large scale dipolar magnetic field that produces an extended feature on the stellar surface. In the second scenario, a low mass unknown companion is the emitter of X-rays and it should orbit extremely close to the surface of the primary in a locked spin-orbit configuration, almost on the verge of collapsing onto the primary. As such, the X-ray activity of the secondary star would be enhanced by its young age, and the tight orbit as in RS Cvn systems. In both cases rho Oph would constitute an extreme system that is worthy of further investigation. KW - stars: activity KW - stars: individual: Rho Ophiuchi KW - stars: early-type KW - stars: magnetic field KW - starspots KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201630070 SN - 1432-0746 VL - 602 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Pillitteri, Ignazio A1 - Fossati, Luca A1 - Rodriguez, N. Castro A1 - Oskinova, Lida A1 - Wolk, Scott J. T1 - Detection of magnetic field in the B2 star rho Ophiuchi A with ESO FORS2 JF - Astronomy and astrophysics : an international weekly journal N2 - Circumstantial evidence suggests that magnetism and enhanced X-ray emission are likely correlated in early B-type stars: similar fractions of them (similar to 10%) are strong and hard X-ray sources and possess strong magnetic fields. It is also known that some B-type stars have spots on their surface. Yet up to now no X-ray activity associated with spots on early-type stars was detected. In this Letter we report the detection of a magnetic field on the B2V star rho Oph A. Previously, we assessed that the X-ray activity of this star is associated with a surface spot, herewith we establish its magnetic origin. We analyze spectra of rho Oph A obtained with the FORS2 spectrograph at ESO Very Large Telescope (VLT) at two epochs, and detect a longitudinal component of the magnetic field of the order of similar to 500 G in one of the datasets. The detection of the magnetic field only at one epoch can be explained by stellar rotation which is also invoked to explain observed periodic X-ray activity. From archival HARPS ESO VLT high resolution spectra we derived the fundamental stellar parameters of rho Oph A and further constrained its age. We conclude that rho Oph A provides strong evidence for the presence of active X-ray emitting regions on young magnetized early type stars. KW - stars: activity KW - stars: early-type KW - stars: magnetic field KW - pulsars: individual: rho Ophiuchi A Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201732078 SN - 1432-0746 VL - 610 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Leto, Paolo A1 - Trigilio, C. A1 - Oskinova, Lida A1 - Ignace, R. A1 - Buemi, C. S. A1 - Umana, G. A1 - Ingallinera, A. A1 - Todt, Helge Tobias A1 - Leone, F. T1 - The detection of variable radio emission from the fast rotating magnetic hot B-star HR 7355 and evidence for its X-ray aurorae JF - Monthly notices of the Royal Astronomical Society N2 - In this paper, we investigate the multiwavelength properties of the magnetic early B-type star HR 7355. We present its radio light curves at several frequencies, taken with the Jansky Very Large Array, and X-ray spectra, taken with the XMM-Newton X-ray telescope. Modelling of the radio light curves for the Stokes I and V provides a quantitative analysis of the HR 7355 magnetosphere. A comparison between HR 7355 and a similar analysis for the Ap star CU Vir allows us to study how the different physical parameters of the two stars affect the structure of the respective magnetospheres where the non-thermal electrons originate. Our model includes a cold thermal plasma component that accumulates at high magnetic latitudes that influences the radio regime, but does not give rise to X-ray emission. Instead, the thermal X-ray emission arises from shocks generated by wind stream collisions close to the magnetic equatorial plane. The analysis of the X-ray spectrum of HR 7355 also suggests the presence of a non-thermal radiation. Comparison between the spectral index of the power-law X-ray energy distribution with the non-thermal electron energy distribution indicates that the non-thermal X-ray component could be the auroral signature of the non-thermal electrons that impact the stellar surface, the same non-thermal electrons that are responsible for the observed radio emission. On the basis of our analysis, we suggest a novel model that simultaneously explains the X-ray and the radio features of HR 7355 and is likely relevant for magnetospheres of other magnetic early-type stars. KW - stars: chemically peculiar KW - stars: early-type KW - stars: individual: HR 7355 KW - stars: magnetic field KW - radio continuum: stars KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx267 SN - 0035-8711 SN - 1365-2966 VL - 467 SP - 2820 EP - 2833 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Ignace, R. A1 - Hole, K. T. A1 - Oskinova, Lida A1 - Rotter, J. P. T1 - An X-Ray Study of Two B plus B Binaries: AH Cep and CW Cep JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - AH Cep and CW Cep are both early B-type binaries with short orbital periods of 1.8. days and 2.7. days, respectively. All four components are B0.5V types. The binaries are also double-lined spectroscopic and eclipsing. Consequently, solutions for orbital and stellar parameters make the pair of binaries ideal targets for a study of the colliding winds between two B. stars. Chandra ACIS-I observations were obtained to determine X-ray luminosities. AH. Cep was detected with an unabsorbed X-ray luminosity at a 90% confidence interval of (9-33) x 10(30) erg s(-1), or (0.5-1.7) x 10(-7) L-Bol , relative to the combined Bolometric luminosities of the two components. While formally consistent with expectations for embedded wind shocks, or binary wind collision, the near-twin system of CW Cep was a surprising nondetection. For CW Cep, an upper limit was determined with L-X/L-Bol < 10(-8), again for the combined components. One difference between these two systems is that AH Cep is part of a multiple system. The X-rays from AH. Cep may not arise from standard wind shocks nor wind collision, but perhaps instead from magnetism in any one of the four components of the system. The possibility could be tested by searching for cyclic X-ray variability in AH. Cep on the short orbital period of the inner B. stars. KW - stars: early-type KW - stars: individual (AH Cep, CW Cep) KW - stars: massive KW - stars: winds KW - outflows X-rays: binaries Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa93ea SN - 0004-637X SN - 1538-4357 VL - 850 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Almeida, Leonardo A. A1 - Sana, H. A1 - Taylor, W. A1 - Barbá, Rodolfo A1 - Bonanos, Alceste Z. A1 - Crowther, Paul A1 - Damineli, Augusto A1 - de Koter, A. A1 - de Mink, Selma E. A1 - Evans, C. J. A1 - Gieles, Mark A1 - Grin, Nathan J. A1 - Hénault-Brunet, V. A1 - Langer, Norbert A1 - Lennon, D. A1 - Lockwood, Sean A1 - Maíz Apellániz, Jesús A1 - Moffat, A. F. J. A1 - Neijssel, C. A1 - Norman, C. A1 - Ramírez-Agudelo, O. H. A1 - Richardson, N. D. A1 - Schootemeijer, Abel A1 - Shenar, Tomer A1 - Soszyński, Igor A1 - Tramper, Frank A1 - Vink, J. S. T1 - The tarantula massive binary monitoring BT - I. Observational campaign and OB-type spectroscopic binaries JF - Astronomy and astrophysics : an international weekly journal N2 - Context: Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus’s core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2–O7) tend to have shorter orbital periods than later spectral types (O9.2–O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe’s peak of star formation at redshifts z ~ 1 to 2 which are estimated to have Z ~ 0.5 Z⊙. KW - stars: early-type KW - stars: massive KW - binaries: spectroscopic KW - binaries: close Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629844 SN - 1432-0746 VL - 598 PB - EDP Sciences CY - Les Ulis ER -