TY - JOUR A1 - Albrecht, Torsten A1 - Levermann, Anders T1 - Spontaneous ice-front retreat caused by disintegration of adjacent ice shelf in Antarctica JF - Earth & planetary science letters N2 - Antarctic ice-discharge constitutes the largest uncertainty in future sea-level projections. Floating ice shelves, fringing most of Antarctica, exert retentive forces onto the ice flow. While abrupt ice-shelf retreat has been observed, it is generally considered a localized phenomenon. Here we show that the disintegration of an ice shelf may induce the spontaneous retreat of its neighbor. As an example, we reproduce the spontaneous but gradual retreat of the Larsen B ice front as observed after the disintegration of the adjacent Larsen A ice shelf. We show that the Larsen A collapse yields a change in spreading rate in Larsen B via their connecting ice channels and thereby causes a retreat of the ice front to its observed position of the year 2000, prior to its collapse. This mechanism might be particularly relevant for the role of East Antarctica and the Antarctic Peninsula in future sea level. KW - Antarctica KW - Larsen Ice Shelf KW - glaciology KW - numerical ice modeling KW - sea level KW - iceberg calving Y1 - 2014 U6 - https://doi.org/10.1016/j.epsl.2014.02.034 SN - 0012-821X SN - 1385-013X VL - 393 SP - 26 EP - 30 PB - Elsevier CY - Amsterdam ER -