TY - INPR A1 - Wannicke, Nicola A1 - Endres, S. A1 - Engel, A. A1 - Grossart, Hans-Peter A1 - Nausch, M. A1 - Unger, J. A1 - Voss, Martin T1 - Response of nodularia spumigena to pCO(2) - Part 1: Growth, production and nitrogen cycling T2 - Biogeosciences N2 - Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N-2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 mu atm), mid (median 353 mu atm), and high (median 548 mu atm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO(2) on C and N-2 fixation, as well as on cell growth. An increase in pCO(2) during incubation days 0 to 9 resulted in an elevation in growth rate by 84 +/- 38% (low vs. high pCO(2)) and 40 +/- 25% (mid vs. high pCO(2)), as well as in N-2 fixation by 93 +/- 35% and 38 +/- 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO(2) treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO(2). Our findings suggest that rising pCO(2) stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed. Y1 - 2012 U6 - https://doi.org/10.5194/bg-9-2973-2012 SN - 1726-4170 VL - 9 IS - 8 SP - 2973 EP - 2988 PB - Copernicus CY - Göttingen ER - TY - INPR A1 - Lenhard, Michael T1 - Plant Growth: Jogging the Cell Cycle with JAG T2 - Current biology Y1 - 2012 U6 - https://doi.org/10.1016/j.cub.2012.07.033 SN - 0960-9822 VL - 22 IS - 19 SP - R838 EP - R840 PB - Cell Press CY - Cambridge ER - TY - INPR A1 - Kopetzki, Daniel A1 - Seeberger, Peter H. T1 - Photochemistry in fight against malaria T2 - Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker Y1 - 2012 SN - 1439-9598 SN - 1868-0054 VL - 60 IS - 7-8 SP - 714 EP - 717 PB - Ges. Dt. Chemiker CY - Frankfurt, Main ER - TY - INPR A1 - Baret, Jean-Christophe A1 - Belder, Detlev A1 - Bier, Frank Fabian A1 - Cao, Jialan A1 - Gruschke, Oliver A1 - Hardt, Steffen A1 - Kirschbaum, Michael A1 - Koehler, J. Michael A1 - Schumacher, Soeren A1 - Urban, G. A. A1 - Viefhues, Martina T1 - Contributors to the 10th Anniversary Germany issue T2 - LAB on a chip : miniaturisation for chemistry and biology Y1 - 2012 U6 - https://doi.org/10.1039/c1lc90139g SN - 1473-0197 VL - 12 IS - 3 SP - 419 EP - 421 PB - Royal Society of Chemistry CY - Cambridge ER - TY - INPR A1 - Lenhard, Michael T1 - All's well that ends well arresting cell proliferation in leaves T2 - Developmental cell N2 - The transition from cell proliferation to cell expansion is critical for determining leaf size. Andriankaja et al. (2012) demonstrate that in leaves of dicotyledonous plants, a basal proliferation zone is maintained for several days before abruptly disappearing, and that chloroplast differentiation is required to trigger the onset of cell expansion. Y1 - 2012 U6 - https://doi.org/10.1016/j.devcel.2011.12.004 SN - 1534-5807 VL - 22 IS - 1 SP - 9 EP - 11 PB - Cell Press CY - Cambridge ER -