TY - JOUR A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Hamann, Wolf-Rainer T1 - X-ray line profiles from structured stellar winds N2 - Absorbing material compressed in a number of thin shells is effectively less opaque for X-rays than smoothly distributed gas. The calculated X-ray emission line profiles are red-shifted if the emission arises from the starward side of the shells. Y1 - 2003 SN - 1-58381-133-8 ER - TY - JOUR A1 - Feldmeier, Achim A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer T1 - X-ray line emission from a fragmented stellar wind N2 - We discuss X-ray line formation in dense O star winds. A random distribution of wind shocks is assumed to emit X-rays that are partially absorbed by cooler wind gas. The cool gas resides in highly compressed fragments oriented perpendicular to the radial flow direction. For fully opaque fragments, we find that the blueshifted part of X-ray line profiles remains flat-topped even after severe wind attenuation, whereas the red part shows a steep decline. These box- type, blueshifted profiles resemble recent Chandra observations of the O3 star zeta Pup. For partially transparent fragments, the emission lines become similar to those from a homogeneous wind. Y1 - 2003 ER - TY - JOUR A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Hamann, Wolf-Rainer T1 - X-ray emission lines from inhomogeneous stellar winds N2 - It is commonly adopted that X-rays from O stars are produced deep inside the stellar wind, and transported outwards through the bulk of the expanding matter which attenuates the radiation and affects the shape of emission line profiles. The ability of the X-ray observatories Chandra and XMM-Newton to resolve these lines spectroscopically provided a stringent test for the theory of the X-ray production. It turned out that none of the existing models was able to fit the observations consistently. The possible caveat of these models was the underlying assumption of a smooth stellar wind. Motivated by the evidence that the stellar winds are in fact structured, we present a 2-D numerical model of a stochastic, inhomogeneous wind. Small parcels of hot, X-ray emitting gas are permeated by cool, absorbing wind material which is compressed into thin shell fragments. Wind fragmentation alters the radiative transfer drastically, compared to homogeneous models of the same mass-loss rate. X-rays produced deep inside the wind, which would be totally absorbed in a homogeneous flow, can effectively escape from a fragmented wind. The wind absorption becomes wavelength independent if the individual fragments are optically thick. The X-ray line profiles are flat-topped in the blue part and decline steeply in the red part for the winds with a short acceleration zone. For the winds where the acceleration extends over significant distances, the lines can appear nearly symmetric and only slightly blueshifted, in contrast to the skewed, triangular line profiles typically obtained from homogeneous wind models of high optical depth. We show that profiles from a fragmented wind model can reproduce the observed line profiles from zeta Orionis. The present numerical modeling confirms the results from a previous study, where we derived analytical formulae from a statistical treatment Y1 - 2004 SN - 0004-6361 ER - TY - JOUR A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Cassinelli, Joseph P. A1 - Brown, John C. A1 - Todt, Helge Tobias T1 - X-ray emission from massive stars with magnetic fields JF - Astronomische Nachrichten = Astronomical notes N2 - We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from "normal" massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a "hybrid" scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities. KW - stars: magnetic fields KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - techniques: spectroscopic KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1002/asna.201111602 SN - 0004-6337 VL - 332 IS - 9-10 SP - 988 EP - 993 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz A1 - Koesterke, Lars T1 - WR Central Stars N2 - Wolf-Rayet type central stars have been analyzed with adequate model atmospheres. The obtained stellar parameters and chemical abundances allow for a discussion of their evolutionary origin. Y1 - 2003 SN - 1-583-81148-6 ER - TY - JOUR A1 - Burgemeister, S. A1 - Gvaramadze, Visily V. A1 - Stringfellow, G. S. A1 - Kniazev, Alexei Y. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer T1 - WR 120bb and WR 120bc: a pair of WN9h stars with possibly interacting circumstellar shells JF - Monthly notices of the Royal Astronomical Society N2 - Two optically obscured Wolf-Rayet (WR) stars have been recently discovered by means of their infrared (IR) circumstellar shells, which show signatures of interaction with each other. Following the systematics of the WR star catalogues, these stars obtain the names WR 120bb and WR 120bc. In this paper, we present and analyse new near-IR, J-, H- and K-band spectra using the Potsdam Wolf-Rayet model atmosphere code. For that purpose, the atomic data base of the code has been extended in order to include all significant lines in the near-IR bands. The spectra of both stars are classified as WN9h. As their spectra are very similar the parameters that we obtained by the spectral analyses hardly differ. Despite their late spectral subtype, we found relatively high stellar temperatures of 63 kK. The wind composition is dominated by helium, while hydrogen is depleted to 25 per cent by mass. Because of their location in the Scutum-Centaurus Arm, WR 120bb and WR 120bc appear highly reddened, A(Ks) approximate to 2 mag. We adopt a common distance of 5.8 kpc to both stars, which complies with the typical absolute K-band magnitude for the WN9h subtype of -6.5 mag, is consistent with their observed extinction based on comparison with other massive stars in the region, and allows for the possibility that their shells are interacting with each other. This leads to luminosities of log(L/L-circle dot) = 5.66 and 5.54 for WR 120bb and WR 120bc, with large uncertainties due to the adopted distance. The values of the luminosities of WR 120bb and WR 120bc imply that the immediate precursors of both stars were red supergiants (RSG). This implies in turn that the circumstellar shells associated with WR 120bb and WR 120bc were formed by interaction between the WR wind and the dense material shed during the preceding RSG phase. KW - line: identification KW - circumstellar matter KW - stars: fundamental parameters KW - stars: massive KW - stars: Wolf-Rayet Y1 - 2013 U6 - https://doi.org/10.1093/mnras/sts588 SN - 0035-8711 SN - 1365-2966 VL - 429 IS - 4 SP - 3305 EP - 3315 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Heber, Ulrich A1 - Jeffrey, C. S. T1 - Wolf-Rayet stars of high and low mass Y1 - 1996 ER - TY - JOUR A1 - Shenar, Tomer A1 - Hainich, Rainer A1 - Todt, Helge Tobias A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer A1 - Moffat, Anthony F. J. A1 - Eldridge, J. J. A1 - Pablo, H. A1 - Oskinova, Lida A1 - Richardson, N. D. T1 - Wolf-Rayet stars in the Small Magellanic Cloud II. Analysis of the binaries JF - American mineralogist : an international journal of earth and planetary materials N2 - Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (M-i greater than or similar to 20 M-circle dot) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims. By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods. The spectral analysis is performed with the PotsdamWolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results. Significant hydrogen mass fractions (0.1 < X-H < 0.4) are detected in all WN components. A comparison with mass-luminosity relations and evolutionary tracks implies that the majority of the WR stars in our sample are not chemically homogeneous. The WR component in the binary AB6 is found to be very luminous (log L approximate to 6.3 [L-circle dot]) given its orbital mass (approximate to 10 M-circle dot), presumably because of observational contamination by a third component. Evolutionary paths derived for our objects suggest that Roche lobe overflow had occurred in most systems, affecting their evolution. However, the implied initial masses (greater than or similar to 60 M-circle dot) are large enough for the primaries to have entered the WR phase, regardless of binary interaction. Conclusions. Together with the results for the putatively single SMC WR stars, our study suggests that the binary evolution channel does not dominate the formation of WR stars at SMC metallicity. KW - stars: massive KW - stars: Wolf-Rayet KW - stars: evolution KW - binaries: close KW - binaries: symbiotic KW - Magellanic Clouds Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527916 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hainich, Rainer A1 - Pasemann, Diana A1 - Todt, Helge Tobias A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer T1 - Wolf-Rayet stars in the Small Magellanic Cloud I. Analysis of the single WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10(5.5) to 10(6.1) L-circle dot. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. Conclusions. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past. KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: early-type KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526241 SN - 1432-0746 VL - 581 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz A1 - Koesterke, Lars T1 - Wolf-Rayet star parameters from spectral analyses N2 - The Potsdam Non-LTE code for expanding atmospheres, which accounts for clumping and iron-line blanketing, has been used to establish a grid of model atmospheres for WC stars. A parameter degeneracy is discovered for early-type WC models which do not depend on the "stellar temperature". 15 galactic WC4-7 stars are analyzed, showing a very uniform carbon abundance (He:C=55:40) with only few exceptions. Y1 - 2003 SN - 1-58381-133-8 ER -