TY - THES A1 - Kraus, Sara Milena T1 - A Systems Medicine approach for heart valve diseases BT - addressing the proteomic landscape and differential expression software N2 - In Systems Medicine, in addition to high-throughput molecular data (*omics), the wealth of clinical characterization plays a major role in the overall understanding of a disease. Unique problems and challenges arise from the heterogeneity of data and require new solutions to software and analysis methods. The SMART and EurValve studies establish a Systems Medicine approach to valvular heart disease -- the primary cause of subsequent heart failure. With the aim to ascertain a holistic understanding, different *omics as well as the clinical picture of patients with aortic stenosis (AS) and mitral regurgitation (MR) are collected. Our task within the SMART consortium was to develop an IT platform for Systems Medicine as a basis for data storage, processing, and analysis as a prerequisite for collaborative research. Based on this platform, this thesis deals on the one hand with the transfer of the used Systems Biology methods to their use in the Systems Medicine context and on the other hand with the clinical and biomolecular differences of the two heart valve diseases. To advance differential expression/abundance (DE/DA) analysis software for use in Systems Medicine, we state 21 general software requirements and features of automated DE/DA software, including a novel concept for the simple formulation of experimental designs that can represent complex hypotheses, such as comparison of multiple experimental groups, and demonstrate our handling of the wealth of clinical data in two research applications DEAME and Eatomics. In user interviews, we show that novice users are empowered to formulate and test their multiple DE hypotheses based on clinical phenotype. Furthermore, we describe insights into users' general impression and expectation of the software's performance and show their intention to continue using the software for their work in the future. Both research applications cover most of the features of existing tools or even extend them, especially with respect to complex experimental designs. Eatomics is freely available to the research community as a user-friendly R Shiny application. Eatomics continued to help drive the collaborative analysis and interpretation of the proteomic profile of 75 human left myocardial tissue samples from the SMART and EurValve studies. Here, we investigate molecular changes within the two most common types of valvular heart disease: aortic valve stenosis (AS) and mitral valve regurgitation (MR). Through DE/DA analyses, we explore shared and disease-specific protein alterations, particularly signatures that could only be found in the sex-stratified analysis. In addition, we relate changes in the myocardial proteome to parameters from clinical imaging. We find comparable cardiac hypertrophy but differences in ventricular size, the extent of fibrosis, and cardiac function. We find that AS and MR show many shared remodeling effects, the most prominent of which is an increase in the extracellular matrix and a decrease in metabolism. Both effects are stronger in AS. In muscle and cytoskeletal adaptations, we see a greater increase in mechanotransduction in AS and an increase in cortical cytoskeleton in MR. The decrease in proteostasis proteins is mainly attributable to the signature of female patients with AS. We also find relevant therapeutic targets. In addition to the new findings, our work confirms several concepts from animal and heart failure studies by providing the largest collection of human tissue from in vivo collected biopsies to date. Our dataset contributing a resource for isoform-specific protein expression in two of the most common valvular heart diseases. Apart from the general proteomic landscape, we demonstrate the added value of the dataset by showing proteomic and transcriptomic evidence for increased expression of the SARS-CoV-2- receptor at pressure load but not at volume load in the left ventricle and also provide the basis of a newly developed metabolic model of the heart. N2 - In der Systemmedizin spielt zusätzlich zu den molekularen Hochdurchsatzdaten (*omics) die Fülle an klinischer Charakterisierung eine große Rolle im Gesamtverständnis einer Krankheit. Hieraus ergeben sich Probleme und Herausforderungen unter anderem in Bezug auf Softwarelösungen und Analysemethoden. Die SMART- und EurValve-Studien etablieren einen systemmedizinischen Ansatz für Herzklappenerkrankungen -- die Hauptursache für eine spätere Herzinsuffizienz. Mit dem Ziel ein ganzheitliches Verständnis zu etablieren, werden verschiedene *omics sowie das klinische Bild von Patienten mit Aortenstenosen (AS) und Mitralklappeninsuffizienz (MR) erhoben. Unsere Aufgabe innerhalb des SMART Konsortiums bestand in der Entwicklung einer IT-Plattform für Systemmedizin als Grundlage für die Speicherung, Verarbeitung und Analyse von Daten als Voraussetzung für gemeinsame Forschung. Ausgehend von dieser Plattform beschäftigt sich diese Arbeit einerseits mit dem Transfer der genutzten systembiologischen Methoden hin zu einer Nutzung im systemmedizinischen Kontext und andererseits mit den klinischen und biomolekularen Unterschieden der beiden Herzklappenerkrankungen. Um die Analysesoftware für differenzielle Expression/Abundanz, eine häufig genutzte Methode der System Biologie, für die Nutzung in der Systemmedizin voranzutreiben, erarbeiten wir 21 allgemeine Softwareanforderungen und Funktionen einer automatisierten DE/DA Software. Darunter ist ein neuartiges Konzept für die einfache Formulierung experimenteller Designs, die auch komplexe Hypothesen wie den Vergleich mehrerer experimenteller Gruppen abbilden können und demonstrieren unseren Umgang mit der Fülle klinischer Daten in zwei Forschungsanwendungen -- DEAME und Eatomics. In Nutzertests zeigen wir, dass Nutzer befähigt werden, ihre vielfältigen Hypothesen zur differenziellen Expression basierend auf dem klinischen Phänotyp zu formulieren und zu testen, auch ohne einen dedizierten Hintergrund in Bioinformatik. Darüber hinaus beschreiben wir Einblicke in den allgemeinen Eindruck der Nutzer, ihrer Erwartung an die Leistung der Software und zeigen ihre Absicht, die Software auch in der Zukunft für ihre Arbeit zu nutzen. Beide Forschungsanwendungen decken die meisten Funktionen bestehender Tools ab oder erweitern sie sogar, insbesondere im Hinblick auf komplexe experimentelle Designs. Eatomics steht der Forschungsgemeinschaft als benutzerfreundliche R Shiny-Anwendung frei zur Verfügung. \textit{Eatomics} hat weiterhin dazu beigetragen, die gemeinsame Analyse und Interpretation des Proteomprofils von 75 menschlichen linken Myokardgewebeproben aus den SMART- und EurValve-Studien voran zu treiben. Hier untersuchen wir die molekularen Veränderungen innerhalb der beiden häufigsten Arten von Herzklappenerkrankungen: AS und MR. Durch DE/DA Analysen erarbeiten wir gemeinsame und krankheitsspezifische Proteinveränderungen, insbesondere Signaturen, die nur in einer geschlechtsstratifizierten Analyse gefunden werden konnten. Darüber hinaus beziehen wir Veränderungen des Myokardproteoms auf Parameter aus der klinischen Bildgebung. Wir finden eine vergleichbare kardiale Hypertrophie, aber Unterschiede in der Ventrikelgröße, dem Ausmaß der Fibrose und der kardialen Funktion. Wir stellen fest, dass AS und MR viele gemeinsame Remodelling-Effekte zeigen, von denen die wichtigsten die Zunahme der extrazellulären Matrix und eine Abnahme des Metabolismus sind. Beide Effekte sind bei AS stärker. Zusätzlich zeigt sich eine größere Variabilität zwischen den einzelnen Patienten mit AS. Bei Muskel- und Zytoskelettanpassungen sehen wir einen stärkeren Anstieg der Mechanotransduktion bei AS und einen Anstieg des kortikalen Zytoskeletts bei MR. Die Abnahme von Proteinen der Proteostase ist vor allem der Signatur von weiblichen Patienten mit AS zuzuschreiben. Außerdem finden wir therapierelevante Proteinveränderungen. Zusätzlich zu den neuen Erkenntnissen bestätigt unsere Arbeit mehrere Konzepte aus Tierstudien und Studien zu Herzversagen durch die bislang größte Kollektion von humanem Gewebe aus in vivo Biopsien. Mit unserem Datensatz stellen wir eine Ressource für die isoformspezifische Proteinexpression bei zwei der häufigsten Herzklappenerkrankungen zur Verfügung. Abgesehen von der allgemeinen Proteomlandschaft zeigen wir den Mehrwert des Datensatzes, indem wir proteomische und transkriptomische Beweise für eine erhöhte Expression des SARS-CoV-2- Rezeptors bei Drucklast, jedoch nicht bei Volumenlast im linken Ventrikel aufzeigen und außerdem die Grundlage eines neu entwickelten metabolischen Modells des Herzens liefern. KW - Systems Medicine KW - Systemmedizin KW - Proteomics KW - Proteom KW - Heart Valve Diseases KW - Herzklappenerkrankungen KW - Differential Expression Analysis KW - Software KW - Software Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-522266 ER - TY - THES A1 - Winck, Flavia Vischi T1 - Nuclear proteomics and transcription factor profiling in Chlamydomonas reinhardtii T1 - Nukleare Proteomics und Transkriptionsfaktoren : Profiling in Chlamydomonas reinhardtii N2 - The transcriptional regulation of the cellular mechanisms involves many different components and different levels of control which together contribute to fine tune the response of cells to different environmental stimuli. In some responses, diverse signaling pathways can be controlled simultaneously. One of the most important cellular processes that seem to possess multiple levels of regulation is photosynthesis. A model organism for studying photosynthesis-related processes is the unicellular green algae Chlamydomonas reinhardtii, due to advantages related to culturing, genetic manipulation and availability of genome sequence. In the present study, we were interested in understanding the regulatory mechanisms underlying photosynthesis-related processes. To achieve this goal different molecular approaches were followed. In order to indentify protein transcriptional regulators we optimized a method for isolation of nuclei and performed nuclear proteome analysis using shotgun proteomics. This analysis permitted us to improve the genome annotation previously published and to discover conserved and enriched protein motifs among the nuclear proteins. In another approach, a quantitative RT-PCR platform was established for the analysis of gene expression of predicted transcription factor (TF) and other transcriptional regulator (TR) coding genes by transcript profiling. The gene expression profiles for more than one hundred genes were monitored in time series experiments under conditions of changes in light intensity (200 µE m-2 s-1 to 700 µE m-2 s-1), and changes in concentration of carbon dioxide (5% CO2 to 0.04% CO2). The results indicate that many TF and TR genes are regulated in both environmental conditions and groups of co-regulated genes were found. Our findings also suggest that some genes can be common intermediates of light and carbon responsive regulatory pathways. These approaches together gave us new insights about the regulation of photosynthesis and revealed new candidate regulatory genes, helping to decipher the gene regulatory networks in Chlamydomonas. Further experimental studies are necessary to clarify the function of the candidate regulatory genes and to elucidate how cells coordinately regulate the assimilation of carbon and light responses. N2 - Pflanzen nutzen das Sonnenlicht um Substanzen, sogenannte Kohlenhydrate, zu synthetisieren. Diese können anschließend als Energielieferant für das eigene Wachstum genutzt werden. Der aufbauende Prozess wird als Photosynthese bezeichnet. Ein wichtiges Anliegen ist deshalb zu verstehen, wie Pflanzen äußere Einflüsse wahrnehmen und die Photosynthese dementsprechend regulieren. Ihre Zellen tragen diese Informationen in den Genen. Die Pflanzen nutzen aber in der Regel nicht alle ihre Gene gleichzeitig, die sie zur Anpassung an Umwelteinflüsse besitzen. Zu meist wird nur eine Teilfraktion der gesamten Information benötigt. Wir wollten der Frage nachgehen, welche Gene die Zellen für welche Situation regulieren. Im Zellkern gibt es Proteine, sogenannte Transkriptionsfaktoren, die spezifische Gene finden können und deren Transkription modulieren. Wenn ein Gen gebraucht wird, wird seine Information in andere Moleküle übersetzt (transkribiert), sogenannte Transkripte. Die Information dieser Transkripte wird benutzt um Proteine, Makromoleküle aus Aminsäuren, zu synthetisieren. Aus der Transkription eines Gens kann eine große Zahl des Transkripts entstehen. Es ist wahrscheinlich, dass ein Gen, dass gerade gebraucht wird, mehr Transkriptmoleküle hat als andere Gene. Da die Transkriptionsfaktoren mit der Transkription der Gene interferieren können, entwickelten wir in der vorliegenden Arbeit Strategien zur Identifikation dieser im Zellkern zu findenden Proteine mittels eines „Proteomics“-Ansatzes. Wir entwickelten weiterhin eine Strategie zur Identififikation von Transkripten Transkriptionsfaktor-codierender Gene in der Zelle und in welche Menge sie vorkommen. Dieser Ansatz wird als „Transcript-Profiling“ bezeichnet. Wir fanden Zellkern-lokalisierte Proteine, die als Signalmoleküle funktionieren könnten und Transkripte, die bei unterschiedlichen Umweltbedingungen in der Zelle vorhanden waren. Wir benutzten, die oben genannten Ansätze um die einzellige Grünalge Chlamydomonas zu untersuchen. Die Informationen, die wir erhielten, halfen zu verstehen welche Transkriptionsfaktoren notwendig sind, damit Chlamydomonas bei unterschiedlichen Umweltbedingungen, wie z.B. unterschiedliche Lichtintensitäten und unterschiedlicher Konzentration von Kohlenstoffdioxid, überlebt. KW - Proteomics KW - Transkriptionsfaktoren KW - Pflanzen KW - Chlamydomonas KW - Transcriptomics KW - Proteomics KW - Transcription factors KW - Plants KW - Chlamydomonas KW - Transcriptomics Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53909 ER - TY - JOUR A1 - Gietler, Marta A1 - Nykiel, Malgorzata A1 - Orzechowski, Slawomir A1 - Zagdanska, Barbara A1 - Fettke, Jörg T1 - Proteomic analysis of S-nitrosylated and S-glutathionylated proteins in wheat seedlings with different dehydration tolerances JF - Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology N2 - A loss of dehydration tolerance in wheat seedlings on the fifth day following imbibition is associated with a disturbance in cellular redox homeostasis, as documented by a shift of the reduced/oxidized glutathione ratio to a more oxidized state and a significant increase in the ratio of protein thiols to the total thiol group content. Therefore, the identification and characterization of redox-sensitive proteins are important steps toward understanding the molecular mechanisms of the loss of dehydration tolerance. In the present study, proteins that were differentially expressed between fully turgid (control), dehydrated tolerant (four-day-old) and dehydrated sensitive (six-day-old) wheat seedlings were analysed. Protein spots having at least a significant (p < 0.05) two-fold change in protein abundance were selected by Delta2D as differentially expressed, identified by MALDI-TOF and LC-MS/MS, and classified according to their function. The observed changes in the proteomic patterns of the differentially S-nitrosylated and S-glutathionylated proteins were highly specific in dehydration-tolerant and-sensitive wheat seedlings. The metabolic function of these proteins indicates that dehydration tolerance is mainly related to nucleic acids, protein metabolism, and energy metabolism. It has been proven that leaf-specific thionins BTH6 and DB4, chloroplastic 50S ribosomal protein L16, phospholipase A1-II delta, and chloroplastic thioredoxin M2 are both S-nitrosylated and S-glutathionylated upon water deficiency. Our results revealed the existence of interplay between S-nitrosylation and S-glutathionylation, two redox-regulated protein posttranslational modifications that could enhance plant defence mechanisms and/or facilitate the acclimation of plants to unfavourable environmental conditions. (C) 2016 Elsevier Masson SAS. All rights reserved. KW - Dehydration tolerance KW - Proteomics KW - Redox sensitive proteins KW - S-glutathionylation KW - S-nitrosylation KW - Triticum aestivum L. Y1 - 2016 U6 - https://doi.org/10.1016/j.plaphy.2016.08.017 SN - 0981-9428 VL - 108 SP - 507 EP - 518 PB - Elsevier CY - Paris ER -