TY - THES A1 - Zheng, Chunming T1 - Bursting and synchronization in noisy oscillatory systems T1 - Bursting und Synchronisation in verrauschten, oszillierenden Systemen N2 - Noise is ubiquitous in nature and usually results in rich dynamics in stochastic systems such as oscillatory systems, which exist in such various fields as physics, biology and complex networks. The correlation and synchronization of two or many oscillators are widely studied topics in recent years. In this thesis, we mainly investigate two problems, i.e., the stochastic bursting phenomenon in noisy excitable systems and synchronization in a three-dimensional Kuramoto model with noise. Stochastic bursting here refers to a sequence of coherent spike train, where each spike has random number of followers due to the combined effects of both time delay and noise. Synchronization, as a universal phenomenon in nonlinear dynamical systems, is well illustrated in the Kuramoto model, a prominent model in the description of collective motion. In the first part of this thesis, an idealized point process, valid if the characteristic timescales in the problem are well separated, is used to describe statistical properties such as the power spectral density and the interspike interval distribution. We show how the main parameters of the point process, the spontaneous excitation rate, and the probability to induce a spike during the delay action can be calculated from the solutions of a stationary and a forced Fokker-Planck equation. We extend it to the delay-coupled case and derive analytically the statistics of the spikes in each neuron, the pairwise correlations between any two neurons, and the spectrum of the total output from the network. In the second part, we investigate the three-dimensional noisy Kuramoto model, which can be used to describe the synchronization in a swarming model with helical trajectory. In the case without natural frequency, the Kuramoto model can be connected with the Vicsek model, which is widely studied in collective motion and swarming of active matter. We analyze the linear stability of the incoherent state and derive the critical coupling strength above which the incoherent state loses stability. In the limit of no natural frequency, an exact self-consistent equation of the mean field is derived and extended straightforward to any high-dimensional case. N2 - Rauschen ist in der Natur allgegenwärtig und führt zu einer reichen Dynamik in stochastischen Systemen von gekoppelten Oszillatoren, die in so unterschiedlichen Bereichen wie Physik, Biologie und in komplexen Netzwerken existieren. Korrelation und Synchronisation von zwei oder vielen Oszillatoren ist in den letzten Jahren ein aktives Forschungsfeld. In dieser Arbeit untersuchen wir hauptsächlich zwei Probleme, d.h. das stochastische Burst-Phänomen in verrauschten anregbaren Systemen und die Synchronisation in einem dreidimensionalen Kuramoto-Modell mit Rauschen. Stochastisches Bursting bezieht sich hier auf eine Folge von kohärenten Spike-Zügen, bei denen jeder Spike aufgrund der kombinierten Effekte von Zeitverzögerung und Rauschen eine zufällige Anzahl von Folge Spikes aufweist. Die Synchronisation als universelles Phänomen in nichtlinearen dynamischen Systemen kann anhand des Kuramoto-Modells, einem grundlegenden Modell bei der gekoppelter Oszillatoren und kollektiver Bewegung, gut demonstriert und analysiert werden. Im ersten Teil dieser Arbeit wird ein idealisierter Punktprozess betrachtet, der gültig ist, wenn die charakteristischen Zeitskalen im Problem gut voneinander getrennt sind,um statistische Eigenschaften wie die spektrale Leistungsdichte und die Intervallverteilung zwischen Neuronen Impulsen zu beschreiben. Wir zeigen, wie die Hauptparameter des Punktprozesses, die spontane Anregungsrate und die Wahrscheinlichkeit, während der Verzögerungsaktion einen Impuls zu induzieren, aus den Lösungen einer stationären und einer getriebenen Fokker-Planck-Gleichung berechnet werden können. Wir erweitern dieses Ergebnis auf den verzögerungsgekoppelten Fall und leiten analytisch die Statistiken der Impulse in jedem Neuron, die paarweisen Korrelationen zwischen zwei beliebigen Neuronen und das Spektrum der Zeitreihe alle Impulse aus dem Netzwerk ab. Im zweiten Teil untersuchen wir das dreidimensionale verrauschte Kuramoto-Modell, mit dem die Synchronisation eines Schwarmmodells mit schraubenförmigen Flugbahnen beschrieben werden kann. Im Fall ohne Eigenfrequenz jedes Teilchensist das System äquivalent zum Vicsek Modell, welches in der Beschreibung der kollektiven Bewegung von Schwärmen und aktiver Materie eine breite Anwendung findet. Wir analysieren die lineare Stabilität des inkohärenten Zustands und leiten die kritische Kopplungsstärke ab, oberhalb derer der inkohärente Zustand an Stabilität verliert. Im Fall ohne Eigenfrequenz wird eine exakte selbstkonsistente Gleichung für das mittlere Feld abgeleitet und direkt für höherdimensionale Bewegungen verallgemeinert. KW - Synchronization KW - Kuramoto model KW - Oscillation KW - stochastic bursting KW - Synchronisation KW - Kuramoto-Modell KW - Oszillatoren KW - Stochastisches Bursting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-500199 ER - TY - JOUR A1 - Vlasov, Vladimir A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability JF - Journal of physics : A, Mathematical and theoretical N2 - As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations. KW - Kuramoto model KW - oscillator populations KW - integrability KW - perturbation theory Y1 - 2016 U6 - https://doi.org/10.1088/1751-8113/49/31/31LT02 SN - 1751-8113 SN - 1751-8121 VL - 49 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Tönjes, Ralf T1 - Pattern formation through synchronization in systems of nonidentical autonomous oscillators T1 - Musterbildung durch Synchronisation in Systemen nicht identischer, autonomer Oszillatoren N2 - This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators. N2 - Die vorliegende Arbeit beschäftigt sich in Theorie und Simulation mit den raum-zeitlichen Strukturen, die entstehen, wenn nicht-identische, diffusiv gekoppelte Oszillatoren synchronisieren. Wir greifen dabei auf die von Kuramoto hergeleiteten Phasengleichungen zurück. Eine entscheidene Rolle für die Musterbildung spielt die Symmetrie der Kopplung. Wir untersuchen den ordnenden Einfluss von Asymmetrie (Nichtisochronizität) in der Phasenkopplungsfunktion auf das Phasenprofil in Synchronisation und das Zusammenspiel zwischen dieser Asymmetrie und der Frequenzheterogenität im System. Die Arbeit gliedert sich in drei Hauptteile. Kapitel 2 und 3 beschäftigen sich mit den grundlegenden Gleichungen und den Bedingungen für stabile Synchronisation. Im Kapitel 4 charakterisieren wir die Phasenprofile in Synchronisation für verschiedene Spezialfälle sowie in der von uns eingeführten exponentiellen Approximation der Phasenkopplungsfunktion. Schliesslich untersuchen wir im dritten Teil (Kap.5) den Einfluss von Nichtisochronizität auf die Synchronisationsfrequenz in kontinuierlichen, oszillatorischen Reaktions-Diffusionssystemen und diskreten Netzwerken von Oszillatoren. KW - Synchronisation KW - Musterbildung KW - Phasen-Gleichungen KW - Phasen-Oszillatoren KW - Kuramoto Modell KW - synchronization KW - pattern formation KW - phase equations KW - phase oscillators KW - Kuramoto model Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15973 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael T1 - Dynamics of heterogeneous oscillator ensembles in terms of collective variables JF - Physica :D, Nonlinear phenomena N2 - We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases. KW - Coupled oscillators KW - Oscillator ensembles KW - Kuramoto model KW - Nonlinear coupling KW - Watanabe-Strogatz theory KW - Ott-Antonsen theory Y1 - 2011 U6 - https://doi.org/10.1016/j.physd.2011.01.002 SN - 0167-2789 VL - 240 IS - 9-10 SP - 872 EP - 881 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Peter, Franziska T1 - Transition to synchrony in finite Kuramoto ensembles T1 - Synchronisationsübergang in endlichen Kuramoto-Ensembles N2 - Synchronisation – die Annäherung der Rhythmen gekoppelter selbst oszillierender Systeme – ist ein faszinierendes dynamisches Phänomen, das in vielen biologischen, sozialen und technischen Systemen auftritt. Die vorliegende Arbeit befasst sich mit Synchronisation in endlichen Ensembles schwach gekoppelter selbst-erhaltender Oszillatoren mit unterschiedlichen natürlichen Frequenzen. Das Standardmodell für dieses kollektive Phänomen ist das Kuramoto-Modell – unter anderem aufgrund seiner Lösbarkeit im thermodynamischen Limes unendlich vieler Oszillatoren. Ähnlich einem thermodynamischen Phasenübergang zeigt im Fall unendlich vieler Oszillatoren ein Ordnungsparameter den Übergang von Inkohärenz zu einem partiell synchronen Zustand an, in dem ein Teil der Oszillatoren mit einer gemeinsamen Frequenz rotiert. Im endlichen Fall treten Fluktuationen auf. In dieser Arbeit betrachten wir den bisher wenig beachteten Fall von bis zu wenigen hundert Oszillatoren, unter denen vergleichbar starke Fluktuationen auftreten, bei denen aber ein Vergleich zu Frequenzverteilungen im unendlichen Fall möglich ist. Zunächst definieren wir einen alternativen Ordnungsparameter zur Feststellung einer kollektiven Mode im endlichen Kuramoto-Modell. Dann prüfen wir die Abhängigkeit des Synchronisationsgrades und der mittleren Rotationsfrequenz der kollektiven Mode von Eigenschaften der natürlichen Frequenzverteilung für verschiedene Kopplungsstärken. Wir stellen dabei zunächst numerisch fest, dass der Synchronisationsgrad stark von der Form der Verteilung (gemessen durch die Kurtosis) und die Rotationsfrequenz der kollektiven Mode stark von der Asymmetrie der Verteilung (gemessen durch die Schiefe) der natürlichen Frequenzen abhängt. Beides können wir im thermodynamischen Limes analytisch verifizieren. Mit diesen Ergebnissen können wir Erkenntnisse anderer Autoren besser verstehen und verallgemeinern. Etwas abseits des roten Fadens dieser Arbeit finden wir außerdem einen analytischen Ausdruck für die Volumenkontraktion im Phasenraum. Der zweite Teil der Arbeit konzentriert sich auf den ordnenden Effekt von Fluktuationen, die durch die Endlichkeit des Systems zustande kommen. Im unendlichen Modell sind die Oszillatoren eindeutig in kohärent und inkohärent und damit in geordnet und ungeordnet getrennt. Im endlichen Fall können die auftretenden Fluktuationen zusätzliche Ordnung unter den asynchronen Oszillatoren erzeugen. Das grundlegende Prinzip, die rauschinduzierte Synchronisation, ist aus einer Reihe von Publikationen bekannt. Unter den gekoppelten Oszillatoren nähern sich die Phasen aufgrund der Fluktuationen des Ordnungsparameters an, wie wir einerseits direkt numerisch zeigen und andererseits mit einem Synchronisationsmaß aus der gerichteten Statistik zwischen Paaren passiver Oszillatoren nachweisen. Wir bestimmen die Abhängigkeit dieses Synchronisationsmaßes vom Verhältnis von paarweiser natürlicher Frequenzdifferenz zur Varianz der Fluktuationen. Dabei finden wir eine gute Übereinstimmung mit einem einfachen analytischen Modell, in welchem wir die deterministischen Fluktuationen des Ordnungsparameters durch weißes Rauschen ersetzen. N2 - Synchronization – the adjustment of rhythms among coupled self-oscillatory systems – is a fascinating dynamical phenomenon found in many biological, social, and technical systems. The present thesis deals with synchronization in finite ensembles of weakly coupled self-sustained oscillators with distributed frequencies. The standard model for the description of this collective phenomenon is the Kuramoto model – partly due to its analytical tractability in the thermodynamic limit of infinitely many oscillators. Similar to a phase transition in the thermodynamic limit, an order parameter indicates the transition from incoherence to a partially synchronized state. In the latter, a part of the oscillators rotates at a common frequency. In the finite case, fluctuations occur, originating from the quenched noise of the finite natural frequency sample. We study intermediate ensembles of a few hundred oscillators in which fluctuations are comparably strong but which also allow for a comparison to frequency distributions in the infinite limit. First, we define an alternative order parameter for the indication of a collective mode in the finite case. Then we test the dependence of the degree of synchronization and the mean rotation frequency of the collective mode on different characteristics for different coupling strengths. We find, first numerically, that the degree of synchronization depends strongly on the form (quantified by kurtosis) of the natural frequency sample and the rotation frequency of the collective mode depends on the asymmetry (quantified by skewness) of the sample. Both findings are verified in the infinite limit. With these findings, we better understand and generalize observations of other authors. A bit aside of the general line of thoughts, we find an analytical expression for the volume contraction in phase space. The second part of this thesis concentrates on an ordering effect of the finite-size fluctuations. In the infinite limit, the oscillators are separated into coherent and incoherent thus ordered and disordered oscillators. In finite ensembles, finite-size fluctuations can generate additional order among the asynchronous oscillators. The basic principle – noise-induced synchronization – is known from several recent papers. Among coupled oscillators, phases are pushed together by the order parameter fluctuations, as we on the one hand show directly and on the other hand quantify with a synchronization measure from directed statistics between pairs of passive oscillators. We determine the dependence of this synchronization measure from the ratio of pairwise natural frequency difference and variance of the order parameter fluctuations. We find a good agreement with a simple analytical model, in which we replace the deterministic fluctuations of the order parameter by white noise. KW - synchronization KW - Kuramoto model KW - finite size KW - phase transition KW - dynamical systems KW - networks KW - Synchronisation KW - Kuramoto-Modell KW - endliche Ensembles KW - Phasenübergang KW - dynamische Systeme KW - Netzwerke Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429168 ER - TY - JOUR A1 - Ocampo-Espindola, Jorge Luis A1 - Omel'chenko, Oleh A1 - Kiss, Istvan Z. T1 - Non-monotonic transients to synchrony in Kuramoto networks and electrochemical oscillators JF - Journal of physics. Complexity N2 - We performed numerical simulations with the Kuramoto model and experiments with oscillatory nickel electrodissolution to explore the dynamical features of the transients from random initial conditions to a fully synchronized (one-cluster) state. The numerical simulations revealed that certain networks (e.g., globally coupled or dense Erdos-Renyi random networks) showed relatively simple behavior with monotonic increase of the Kuramoto order parameter from the random initial condition to the fully synchronized state and that the transient times exhibited a unimodal distribution. However, some modular networks with bridge elements were identified which exhibited non-monotonic variation of the order parameter with local maximum and/or minimum. In these networks, the histogram of the transients times became bimodal and the mean transient time scaled well with inverse of the magnitude of the second largest eigenvalue of the network Laplacian matrix. The non-monotonic transients increase the relative standard deviations from about 0.3 to 0.5, i.e., the transient times became more diverse. The non-monotonic transients are related to generation of phase patterns where the modules are synchronized but approximately anti-phase to each other. The predictions of the numerical simulations were demonstrated in a population of coupled oscillatory electrochemical reactions in global, modular, and irregular tree networks. The findings clarify the role of network structure in generation of complex transients that can, for example, play a role in intermittent desynchronization of the circadian clock due to external cues or in deep brain stimulations where long transients are required after a desynchronization stimulus. KW - synchronization KW - networks KW - Kuramoto model KW - electrochemistry KW - chemical KW - oscillations Y1 - 2021 U6 - https://doi.org/10.1088/2632-072X/abe109 SN - 2632-072X VL - 2 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Munyaev, Vyacheslav A1 - Smirnov, Lev A. A1 - Kostin, Vasily A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New Journal of Physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto model KW - noisy systems Y1 - 2019 VL - 22 IS - 2 PB - Springer Science CY - New York ER - TY - GEN A1 - Munyaev, Vyacheslav A1 - Smirnov, Lev A. A1 - Kostin, Vasily A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1188 KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto model KW - noisy systems Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524261 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Lueck, S. A1 - Pikovskij, Arkadij T1 - Dynamics of multi-frequency oscillator ensembles with resonant coupling JF - Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics N2 - We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2 : 1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. KW - Oscillator populations KW - Kuramoto model KW - Resonant interaction Y1 - 2011 U6 - https://doi.org/10.1016/j.physleta.2011.06.016 SN - 0375-9601 VL - 375 IS - 28-29 SP - 2714 EP - 2719 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Komarov, Maxim A1 - Pikovskij, Arkadij T1 - The Kuramoto model of coupled oscillators with a bi-harmonic coupling function JF - Physica : D, Nonlinear phenomena N2 - We study synchronization in a Kuramoto model of globally coupled phase oscillators with a bi-harmonic coupling function, in the thermodynamic limit of large populations. We develop a method for an analytic solution of self-consistent equations describing uniformly rotating complex order parameters, both for single-branch (one possible state of locked oscillators) and multi-branch (two possible values of locked phases) entrainment. We show that synchronous states coexist with the neutrally linearly stable asynchronous regime. The latter has a finite life time for finite ensembles, this time grows with the ensemble size as a power law. (C) 2014 Elsevier B.V. All rights reserved. KW - Kuramoto model KW - Bi-harmonic coupling function KW - Multi-branch entrainment KW - Synchronization Y1 - 2014 U6 - https://doi.org/10.1016/j.physd.2014.09.002 SN - 0167-2789 SN - 1872-8022 VL - 289 SP - 18 EP - 31 PB - Elsevier CY - Amsterdam ER -