TY - JOUR A1 - Zerball, Maximilian A1 - Laschewsky, André A1 - von Klitzing, Regine T1 - Swelling of Polyelectrolyte Multilayers: The Relation Between, Surface and Bulk Characteristics JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - The odd even effect, i.e., the influence of the outermost layer of polyelectrolyte multilayers (PEMs) on their swelling behavior, is investigated. For that purpose poly(styrene sodium sulfonate) (PSS)/poly(diallyl-dimethylammonium chloride) (PDADMAC) polyelectrolyte multilayers are studied in air with 1% relative humidity (RH), 30% RH, 95% RH, and in liquid water by ellipsometry, atomic force microscopy (AFM), and X-ray reflectometry (XRR). Since the total amount of water uptake in swollen PEMs is divided into two fractions, the void water and the swelling water, a correct evaluation of the odd even effect is only possible if both fractions are examined separately. In order to allow measuring samples over a larger thickness regime the investigation of a larger amount of samples is required. Therefore, the concept of separating void water from swelling water using neutron reflectometry is for the first time transferred to ellipsometry. The subsequent analysis of swelling water, void water, and roughness revealed the existence of two types of odd even effects: an odd even effect which addresses only the surface of the PEM (surface-odd even effect) and an odd even effect which addresses also the bulk of the PEM (bulk-odd even effect). The appearance of both effects is dependent on the environment; the surface-odd even effect is only detectable in humid air while the bulk-odd even effect is only detectable in liquid water. The bulk-odd even effect is related to the osmotic pressure between the PEM and the surrounding water. A correlation between the amount of void water and both odd even effects is not found. The amount of void water is independent of the terminated layer and the thickness of PEMs. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpcb.5b04350 SN - 1520-6106 VL - 119 IS - 35 SP - 11879 EP - 11886 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - von Klitzing, Regine A1 - Stehl, Dimitrij A1 - Pogrzeba, Tobias A1 - Schomaäcker, Reinhard A1 - Minullina, Renata A1 - Panchal, Abhishek A1 - Konnova, Svetlana A1 - Fakhrullin, Rawil A1 - Koetz, Joachim A1 - Moehwald, Helmuth A1 - Lvov, Yuri T1 - Halloysites Stabilized Emulsions for Hydroformylation of Long Chain Olefins JF - Advanced materials interfaces N2 - Halloysites as tubular alumosilicates are introduced as inexpensive natural nanoparticles to form and stabilize oil-water emulsions. This stabilized emulsion is shown to enable efficient interfacial catalytic reactions. Yield, selectivity, and product separation can be tremendously enhanced, e.g., for the hydroformylation reaction of dodecene to tridecanal. In perspective, this type of formulation may be used for oil spill dispersions. The key elements of the described formulations are clay nanotubes (halloysites) which are highly anisometric, can be filled by helper molecules, and are abundantly available in thousands of tons, making this technology scalable for industrial applications. Y1 - 2016 U6 - https://doi.org/10.1002/admi.201600435 SN - 2196-7350 VL - 4 IS - 1 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Vargas-Ruiz, Salome A1 - Schulreich, Christoph A1 - Kostevic, Angelika A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Kakorin, Sergej A1 - von Klitzing, Regine A1 - Jung, Martin A1 - Hellweg, Thomas A1 - Wellert, Stefan T1 - Extraction of model contaminants from solid surfaces by environmentally compatible microemulsions JF - Journal of colloid and interface science N2 - In the present contribution, we evaluate the efficiency of eco-friendly microemulsions to decontaminate solid surfaces by monitoring the extraction of non-toxic simulants of sulfur mustard out of model surfaces. The extraction process of the non-toxic simulants has been monitored by means of spectroscopic and chromatographic techniques. The kinetics of the removal process was analyzed by different empirical models. Based on the analysis of the kinetics, we can assess the influence of the amounts of oil and water and the microemulsion structure on the extraction process. (C) 2016 Elsevier Inc. All rights reserved. KW - Microemulsions KW - Decontamination KW - Surface removal KW - Kinetic analysis KW - Extraction Y1 - 2016 U6 - https://doi.org/10.1016/j.jcis.2016.03.006 SN - 0021-9797 SN - 1095-7103 VL - 471 SP - 118 EP - 126 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Kristen-Hochrein, Nora A1 - Laschewsky, André A1 - Miller, Reinhard A1 - von Klitzing, Regine T1 - Stability of foam Films of oppositely charged polyelectrolyte/surfactant mixtures - effect of isoelectric point JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - In the present paper, the influence of the surfactant concentration and the degree of charge of a polymer on foam film properties of oppositely charged polyelectrolyte/surfactant mixtures has been investigated. To verify the assumption that the position of the isoelectric point (IEP) does not change the character of the foam film stabilities, the position of the IEP of the polyelectrolyte/surfactant mixtures has been shifted in two different ways. Within the first series of experiments, the foam. film properties were studied using a fixed surfactant concentration of 3 x 10(-5) M in the mixture. Due to the low surfactant concentration, this is a rather dilute system. In the second approach, a copolymer of nonionic and ionic monomer units was Used to lower the charge density of the polymer. This gave rise to additional interactions between the polyelectrolyte and the surfactant, which makes the description of the foam film behavior more complex. In both systems, the same characteristics of the foam film stabilities were found: The foam film stability is reduced toward the IEP of the system, followed by a destabilization around the IEP., At polyelectrolyte concentrations above the IEP, foam films are very stable. However, the concentration range where unstable films were formed was rather broad, and the mechanisms leading to the destabilization had different origins. The results were compared with former findings on PAMPS/C(14)TAB mixtures with an IEP of 10(-4)M.(1) Y1 - 2011 U6 - https://doi.org/10.1021/jp206964k SN - 1520-6106 VL - 115 IS - 49 SP - 14475 EP - 14483 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Dodoo, Samuel A1 - Balzer, Bizan N. A1 - Hugel, Thorsten A1 - Laschewsky, André A1 - von Klitzing, Regine T1 - Effect of ionic strength and layer number on swelling of polyelectrolyte multilayers in water vapour JF - Soft materials N2 - The swelling behavior of polyelectrolyte multilayers (PEMs) of poly(sodium-4 styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared from aqueous solution of 0.1 M and 0.5 M NaCl are investigated by ellipsometry and Atomic Force Microscopy (AFM). From 1 double-layer up to 4 double-layers of 0.1 M NaCl, the amount of swelling water in the PEMs decreases with increasing number of adsorbed double layers due to an increase in polyelectrolyte density as a result of the attraction between the positively charged outermost PDADMAC layer and the Si substrate. From 6 double layers to 30 double layers, the attraction is reduced due to a much larger distance between substrate and outermost layer leading to a much lower polyelectrolyte density and higher swelling water. In PEMs prepared from aqueous solution of 0.5 M NaCl, the amount of water constantly increases which is related to a monotonically decreasing polyelectrolyte density with increasing number of polyelectrolyte layers. Studies of the surface topology also indicate a transition from a more substrate affected interphase behavior to a continuum properties of the polyelectrolyte multilayers. The threshold for the transition from interphase to continuum behavior depends on the preparation conditions of the PEM. KW - Continuum properties KW - Interphase behavior KW - Ionic strength KW - Multilayers KW - Polyelectrolytes KW - Substrate effect KW - Swelling behavior KW - Threshold KW - Water vapor Y1 - 2013 U6 - https://doi.org/10.1080/1539445X.2011.607203 SN - 1539-445X VL - 11 IS - 2 SP - 157 EP - 164 PB - Taylor & Francis Group CY - Philadelphia ER - TY - JOUR A1 - Dodoo, S. A1 - Steitz, R. A1 - Laschewsky, André A1 - von Klitzing, Regine T1 - Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - This study addresses the effect of ionic strength and type of ions on the structure and water content of polyelectrolyte multilayers. Polyelectrolyte multilayers of poly(sodium-4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared at different NaF, NaCl and NaBr concentrations have been investigated by neutron reflectometry against vacuum, H2O and D2O. Both thickness and water content of the multilayers increase with increasing ionic strength and increasing ion size. Two types of water were identified, "void water" which fills the voids of the multilayers and does not contribute to swelling but to a change in scattering length density and "swelling water" which directly contributes to swelling of the multilayers. The amount of void water decreases with increasing salt concentration and anion radius while the amount of swelling water increases with salt concentration and anion radius. This is interpreted as a denser structure in the dry state and larger ability to swell in water (sponge) for multilayers prepared from high ionic strengths and/or salt solution of large anions. No exchange of hydration water or replacement of H by D was detected even after eight hours incubation time in water of opposing isotopic composition. Y1 - 2011 U6 - https://doi.org/10.1039/c0cp01357a SN - 1463-9076 VL - 13 IS - 21 SP - 10318 EP - 10325 PB - Royal Society of Chemistry CY - Cambridge ER -