TY - JOUR A1 - Wanjiku, Barbara A1 - Yamamoto, Kenji A1 - Klossek, Andre A1 - Schumacher, Fabian A1 - Pischon, Hannah A1 - Mundhenk, Lars A1 - Rancan, Fiorenza A1 - Judd, Martyna M. A1 - Ahmed, Muniruddin A1 - Zoschke, Christian A1 - Kleuser, Burkhard A1 - Rühl, Eckart A1 - Schäfer-Korting, Monika T1 - Qualifying X-ray and Stimulated Raman Spectromicroscopy for Mapping Cutaneous Drug Penetration JF - Analytical chemistry N2 - Research on topical drug delivery relies on reconstructed human skin (RHS) in addition to ex vivo human and animal skin, each with specific physiological features. Here, we compared the penetration of dexamethasone from an ethanolic hydroxyethyl cellulose gel into ex vivo human skin, murine skin, and RHS. For comprehensive insights into skin morphology and penetration enhancing mechanisms, scanning transmission X-ray microscopy (STXM), liquid chromatography tandem mass spectrometry (LC-MS/MS), and stimulated Raman spectromicroscopy (SRS) were combined. STXM offers high spatial resolution with label-free drug detection and is therefore sensitive to tissue damage. Despite differences in sample preparation and data analysis, the amounts of dexamethasone in RHS, detected and quantified by STXM and LC-MS/MS, were very similar and increased during the first 100 min of exposure. SRS revealed interactions between the gel and the stratum corneum or, more specifically, its protein and lipid structures. Similar to both types of ex vivo skin, higher protein-to-lipid ratios within the stratum corneum of RHS indicated reduced lipid amounts after 30 min of ethanol exposure. Extended ethanol exposure led to a continued reduction of lipids in the ex vivo matrixes, while protein integrity appeared to be compromised in RHS, which led to declining protein signals. In conclusion, LC-MS/MS proved the predictive capability of STXM for label-free drug detection. Combining STXM with SRS precisely dissected the penetration enhancing effects of ethanol. Further studies on topical drug delivery should consider the potential of these complementary techniques. Y1 - 2019 U6 - https://doi.org/10.1021/acs.analchem.9b00519 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 11 SP - 7208 EP - 7214 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - von Websky, Karoline A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Yin, Liang-Hong A1 - Kleuser, Burkhard A1 - Yang, Xue-Song A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Fetal serum metabolites are independently associated with Gestational diabetes mellitus JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel KW - Gestational diabetes KW - Metabolomics KW - Phosphatidylcholine acyl-alkyl C 32:1 KW - Proline Y1 - 2018 U6 - https://doi.org/10.1159/000487119 SN - 1015-8987 SN - 1421-9778 VL - 45 IS - 2 SP - 625 EP - 638 PB - Karger CY - Basel ER - TY - JOUR A1 - Giulbudagian, Michael A1 - Yealland, Guy A1 - Hönzke, S. A1 - Edlich, A. A1 - Geisendörfer, Birte A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Calderon, Marcelo T1 - Breaking the Barrier BT - potent anti-inflammatory activity following efficient topical delivery of etanercept using thermoresponsive nanogels JF - Theranostics N2 - Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNF alpha binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFa fusion protein etanercept (ETR) (similar to 150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin. KW - thermoresponsive-nanogel KW - topical KW - anti-inflammatory therapy KW - etanercept KW - skin equivalents Y1 - 2018 U6 - https://doi.org/10.7150/thno.21668 SN - 1838-7640 VL - 8 IS - 2 SP - 450 EP - 463 PB - Ivyspring International Publisher CY - Lake haven ER - TY - CHAP A1 - Frombach, Janna A1 - Rancan, Fiorenza A1 - Fleige, Emanuel A1 - Haag, Rainer A1 - Schumacher, Frank A1 - Kleuser, Burkhard A1 - Yamamoto, Kenji A1 - Rühl, Eckart A1 - Blume-Peytavi, Ulrike A1 - Vogt, Annika T1 - Skin penetration and dexamethasone release from polymer nanoparticles in ex vivo human skin T2 - The journal of investigative dermatology Y1 - 2015 SN - 0022-202X SN - 1523-1747 VL - 135 SP - S52 EP - S52 PB - Nature Publ. Group CY - New York ER - TY - CHAP A1 - Arlt, Olga A1 - Schwiebs, Anja A1 - Pfarr, Kathrin A1 - Ranglack, Annika A1 - Bouzas, Ferreiros Nerea A1 - Schreiber, Yannick A1 - Neuber, Corinna A1 - Kleuser, Burkhard A1 - Pfeilschifter, Josef M. A1 - Radeke, Heinfried H. T1 - Dynamic interaction between sphingolipid enzymes, S1P and inflammatory cytokine regulation in dendritic cells T2 - NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY Y1 - 2014 SN - 0028-1298 SN - 1432-1912 VL - 387 SP - S91 EP - S91 PB - Springer CY - New York ER -