TY - JOUR A1 - Schmidt, Bernd A1 - Hermanns, Jolanda T1 - Ring closing metathesis of substrates containing more than two C-C-double bonds : rapid access to functionalized heterocycles N2 - In most cases where ring closing metathesis is applied to the synthesis of heterocycles, alpha,omega-dienes are used as precursors. If substrates containing more than two double bonds are subjected to a metathesis reaction, carba- or heterocycles bearing additional exocyclic alkene functionality result, or multiple ring closing processes occur. This offers interesting and potentially very useful synthetic perspectives. On the other hand, selectivity problems need to be addressed as the cyclization of substrates with more than two double bonds available for olefin metathesis may result in constitutional isomers or stereoisomers. This review highlights problems and opportunities evolving from ring closing metathesis of tri-, tetra-, and polyenes as a strategy for the selective synthesis of functionalized heterocycles. The chapter on RCM of trienes is subdivided according to the symmetry of the metathesis precursor. The following two chapters deal with the double or multiple RCM of tetra- or polyenes. These processes are further classified according to the preferred cyclization mode. Finally, the application of cascade or domino metathesis reactions to the synthesis of heterocycles will be discussed. These processes can be classified into those where exclusively C-C-double bonds take part in the metathesis reaction, and those where one or more C-C-triple bonds are involved Y1 - 2006 ER - TY - JOUR A1 - Hermanns, Jolanda A1 - Schmidt, Bernd A1 - Glowinski, Ingrid A1 - Keller, David T1 - Online teaching in the course "organic chemistry" for nonmajor chemistry students BT - from necessity to opportunity JF - Journal of chemical education N2 - In this communication the development of an online course on the topic organic chemistry for nonmajor chemistry students is described and discussed. For this online course, the existing classroom course was further developed. New elements such as podcasts, task navigators, and a forum for discussing the solving of tasks or problems with the content were added. This new online course was evaluated. Therefore, a questionnaire was developed. This consists of questions with regard to the longtime learning behavior of the students and to the online learning. The results of this evaluation show that a preference for online learning and a preference for classroom teaching can be measured separately in two scales. Students values on the scale representing a preference for online learning correlate positively and significantly with confidence in the choice of the study subject, enthusiasm about the subject, and the ability to organize their learning, learning environment, and time management. They correlate also with the satisfaction concerning the materials provided. Students values for one of those teaching methods also correlate with their rating with regard to their exam preparation. Values representing a preference for online teaching correlate positively with students better feeling of exam preparation. Values representing a preference for classroom teaching show negative correlations with the values representing students similar or even better preparation for the exams as a result of online teaching. It is therefore not surprising that the ratings for the two scales correlate with the wish for a combination of online teaching and classroom teaching in the future. As a solution, a new course concept for the time after the corona virus crisis that suits all students is outlined in the outlook. KW - first-year undergraduate/general KW - organic chenlistry KW - computer-based KW - learning KW - distance learning/self instruction Y1 - 2020 U6 - https://doi.org/10.1021/acs.jchemed.0c00658 SN - 0021-9584 SN - 1938-1328 VL - 97 IS - 9 SP - 3140 EP - 3146 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hermanns, Jolanda A1 - Schmidt, Bernd T1 - Developing and Applying Stepped Supporting Tools in Organic Chemistry To Promote Students’ Self-Regulated Learning JF - Journal of chemical education N2 - Stepped supporting tools were developed and used in the university seminar Organic Chemistry taken by nonmajor chemistry students, which supported self-regulated learning. These supporting tools were also used for accompanying homework, which included a QR code that led to additional supporting tools. The application of stepped supporting tools in the seminars was evaluated by a four-item Likert scale. The students assessed the tools as a helpful instrument for solving tasks in chemistry. KW - High School/Introductory Chemistry KW - Organic Chemistry Y1 - 2018 U6 - https://doi.org/10.1021/acs.jchemed.8b00565 SN - 0021-9584 SN - 1938-1328 VL - 96 IS - 1 SP - 47 EP - 52 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hermanns, Jolanda A1 - Schmidt, Bernd T1 - Zur Verwendung von QR-Codes in Uni-Seminaren – ein Baustein in den neu konzipierten Übungen zur Vorlesung „Organische Chemie für Studierende im Nebenfach“ T1 - The use of QR-Codes in university courses - a building block of the newly constructed accompanying exercises for the lecture "organic chemistry" for chemistry minors JF - Chemkon N2 - Die Verwendung von QR-Codes in Begleitseminaren zur Vorlesung „Organische Chemie“ für Studierende mit Chemie im Nebenfach wird vorgestellt. Die Hausaufgaben zu den Seminaren wurden mit einem QR-Code versehen. Dieser führt zu weiterführenden Hilfen. Der Einsatz der QR-Codes sowie die Neukonzeption der Seminare wurden evaluiert. N2 - The use of QR-Codes in university courses for the lecture "Organic Chemistry" for minor students is presented. The homework to the seminars includes a QR-Code. This code leads to supporting learning aids. The use of the QR-Codes as the new concept into seminars is evaluated. KW - graded learning aids KW - homework KW - Chemical exercises KW - QR-Code Y1 - 2017 U6 - https://doi.org/10.1002/ckon.201710300 SN - 0944-5846 SN - 1521-3730 VL - 24 SP - 139 EP - 141 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hermanns, Jolanda A1 - Keller, David T1 - The development, use, and evaluation of digital games and quizzes in an introductory course on organic chemistry for preservice chemistry teachers JF - Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society N2 - Due to the COVID pandemic, the introductory course on organic chemistry was developed and conducted as anonline course. To ensure methodical variety in this course,educational games and quizzes have been developed, used, and evaluated. The attendance of the course, and therefore also the use of the quizzes and games, was voluntary. The quizzes'main goalwas to give the students the opportunity to check whether they had memorized the knowledge needed in the course. Another goal was to make transparent which knowledge the students shouldmemorize by rote. The evaluation shows that the students hadnot internalized all knowledge which they should apply in severaltasks on organic chemistry. They answered multiselect questions in general less well than single-select questions. The games shouldcombine fun with learning. The evaluation of the games shows that the students rated them very well. The students used thosegames again for their exam preparation, as the monitoring of accessing the games showed. Students'experiences with usingelectronic devices in general or for quizzes and games have also been evaluated, because their experience could influence thestudents'assessment of the quizzes and games used in our study. However, the students used electronic devices regularly and shouldtherefore be technically competent to use our quizzes and games. The evaluation showed that the use of digital games for learningpurposes is not very common, neither at school nor at university, although the students had worked with such tools before. Thestudents are also very interested in using and developing such digital games not only for their own study, but also for their future work at school KW - Organic Chemistry KW - Second-Year Undergraduate KW - Humor KW - Puzzles KW - Games; KW - Internet KW - Web-Based Learning KW - Distance Learning KW - Self Instruction Y1 - 2022 U6 - https://doi.org/10.1021/acs.jchemed.2c00058 SN - 0021-9584 SN - 1938-1328 VL - 99 IS - 4 SP - 1715 EP - 1724 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hermanns, Jolanda A1 - Keller, David T1 - School-related content knowledge in organic chemistry BT - How does the Bachelor and Master studies? JF - Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society N2 - In this paper the development, use, and evaluation of tasks based on the construct of school-related content knowledge are described. The tasks were used in seminars on organic chemistry for bachelor and master preservice chemistry teachers at a German university. For the evaluation a questionnaire with open and closed items was used. The tasks were rated by the preservice chemistry teachers as relevant for their future profession as a chemistry teacher if the content of the tasks is part of the school curriculum. If the content does not belong to the school curriculum, they rated the nature of the tasks still as relevant; they seem to recognize the importance of conceptual knowledge for their future profession. However, the master's preservice teachers argued with this conceptual knowledge more often than the bachelor's preservice teachers. Although the study is cross-sectional, a certain shift from the focus on the content to conceptual knowledge from bachelor's to master's preservice teachers can be observed. KW - Organic Chemistry KW - Second-Year Undergraduate KW - Analogies/Transfer Y1 - 2021 U6 - https://doi.org/10.1021/acs.jchemed.0c01415 SN - 0021-9584 SN - 1938-1328 VL - 98 IS - 3 SP - 763 EP - 773 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hermanns, Jolanda A1 - Keller, David T1 - How do preservice chemistry teachers rate tasks following the construct of school-related content knowledge in a concept-orientated course on organic chemistry? JF - Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society N2 - In this paper, we describe a study on tasks following the construct of school-related content knowledge. We know from previous studies that such tasks were rated by the preservice chemistry teachers as important for their future profession. Those studies were conducted in a traditional course on organic chemistry which was organized around chemical families. Therefore, we used and evaluated the tasks again in a new course on organic chemistry which is organized around basic concepts in organic chemistry. The results of this evaluation show that the students rate the tasks equally well but use other arguments for their rating. They do not focus only on the content of the tasks and whether this content belongs to the school curriculum or not. The students of the conceptual course rated the content more often (95%) as important for their future profession compared with the students in the traditional course (57%). Both groups of students rated the importance of the nature of the task the same way. KW - Organic chemistry KW - Second-Year undergraduate KW - Alcohols KW - Curriculum KW - Molecular structure KW - Organic structure KW - Students Y1 - 2021 U6 - https://doi.org/10.1021/acs.jchemed.1c00593 SN - 0021-9584 SN - 1938-1328 VL - 98 IS - 11 SP - 3442 EP - 3449 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Hermanns, Jolanda T1 - Development, use and evaluation of concepts and materials for teaching organic chemistry at university Y1 - 2021 ER - TY - JOUR A1 - Hermanns, Jolanda T1 - The task navigator following the STRAKNAP concept BT - Development, application, and evaluation of a new scaffold to support nonmajor chemistry students while solving tasks in organic chemistry JF - Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society N2 - Educational Scaffolding was first mentioned in 1976 by Wood et al. Several examples for scaffolding in chemistry are also known from the literature. As written scaffolds, stepped supporting tools to support students while solving problems in organic chemistry were developed, applied, and evaluated. Although the students rated the tool as very helpful, a think-aloud study showed that the support given by this scaffold was not sufficient. As a further development of stepped supporting tools, task navigators were therefore developed, applied, and evaluated. This new scaffold gives tips on strategy, knowledge, and application of knowledge after the STRAKNAP concept. The evaluation of this tool shows that the students rated the tool as being very helpful. A think-aloud study showed that the scaffold supports the students while they solve a problem. Because of the stepwise construction of the task navigators and the providing of the knowledge needed for the application, the students can solve parts of the task successfully even if they do not solve all parts correctly; the students can always start from scratch. When students use the tool regularly, their knowledge of organic chemistry increases compared to students who did not use the tool at all. The task navigator is not only a scaffold for the content of the task but also for the development of methodological competences on the field of strategies and applying knowledge. KW - First-Year Undergraduate/General KW - Organic Chemistry KW - Distance KW - Learning/Chemistry Education Research Y1 - 2021 U6 - https://doi.org/10.1021/acs.jchemed.0c01162 SN - 0021-9584 SN - 1938-1328 VL - 98 IS - 4 SP - 1077 EP - 1087 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hermanns, Jolanda T1 - Training OC BT - A new course concept for training the application of basic concepts in organic chemistry JF - Journal of chemical education N2 - The course design "Training OC" for training the application of basic concepts consists of four topics: formula language, structure-property relations, reaction mechanisms, and complex tasks that the students should solve with the conceptual knowledge they acquired in the first three topics. A main goal of the course was to enable the students to solve reaction mechanisms. To achieve the goals of the course, several games were specially designed and used. The course was conducted at a German university with ca. 30 students who participated voluntarily. The course was evaluated by several tools: students' products were collected in the course, there were two pre/post-tests, and additionally, interviews on the strategy of designing reaction mechanisms were conducted. The performance of the teacher and the self-assessment of the students were also part of the evaluation. The results of the written exam were compared with the results of the bachelor chemistry major students. The course "Training OC" was rated very well by the students. They were of the opinion that they learned the application of basic concepts taught in this course. This is supported by the results of the evaluation and the written exams. The course concept of Training OC will therefore become a permanent part of the course "Organic Chemistry I" which will be redesigned for the next round in 2020-21. KW - Second-Year Undergraduate KW - Organic Chemistry KW - Humor/Puzzles/Games KW - Collaborative/Cooperative Learning Y1 - 2020 U6 - https://doi.org/10.1021/acs.jchemed.0c00567 SN - 0021-9584 SN - 1938-1328 VL - 98 IS - 2 SP - 374 EP - 384 PB - American Chemical Society. Division of Chemical Education CY - Washington ER -