TY - JOUR A1 - Wendt, Martin A1 - Kulanek, Dustin A1 - Varga, Zoltan A1 - Rakosy, Laszlo A1 - Schmitt, Thomas T1 - Pronounced mito-nuclear discordance and various Wolbachia infections in the water ringlet Erebia pronoe have resulted in a complex phylogeographic structure JF - Scientific reports N2 - Several morphological and mitochondrial lineages of the alpine ringlet butterfly species Erebia pronoe have been described, indicating a complex phylogenetic structure. However, the existing data were insufficient and allow neither a reconstruction of the biogeographic history, nor an assessment of the genetic lineages. Therefore, we analysed mitochondrial (COI, NDI) and nuclear (EF1 alpha, RPS5) gene sequences and compared them with sequences from the sister species Erebia melas. Additionally, we combined this information with morphometric data of the male genitalia and the infection patterns with Wolbachia strains, based on a WSP analysis. We obtained a distinct phylogeographic structure within the E. pronoe-melas complex with eight well-distinguishable geographic groups, but also a remarkable mito-nuclear discordance. The mito-nuclear discordance in E. melas and E. pronoe glottis can be explained by different ages of Wolbachia infections with different Wolbachia strains, associated selective sweeps, and hybridisation inhibition. Additionally, we found indications for incipient speciation of E. pronoe glottis in the Pyrenees and a pronounced range dynamic within and among the other high mountain systems of Europe. Our results emphasize the importance of combined approaches in reconstructing biogeographic patterns and evaluating phylogeographic splits. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-08885-8 SN - 2045-2322 VL - 12 IS - 1 PB - Nature Portfolio CY - Berlin ER - TY - JOUR A1 - Wendt, Martin A1 - Senftleben, Nele A1 - Gros, Patrick A1 - Schmitt, Thomas T1 - Coping with environmental extremes BT - population ecology and behavioural adaptation of Erebia pronoe, an Alpine butterfly species JF - Insects : open access journal N2 - Simple Summary:& nbsp;High alpine meadows are home to numerous endemic butterfly species. A combination of climate change and changes in agricultural practices has led to a severe decline in many species. A seemingly unaffected representative of this habitat is Erebia pronoe. We studied the behaviour, resource use and population structure of this species to explain its resilience and estimate its future survival potential. This species shows pronounced protandry in combination with serial eclosion. Males were significantly more active and mobile and were also caught significantly more often than females, resulting in a pronounced shift in sex ratio in the predicted population structure. The adults use a wide range of nectar plants and establish homeranges in areas of high habitat quality. Thus, Erebia pronoe adults use a wide array of resources combined with a slight specialisation to avoid niche overlap with closely related species. The resulting ecological flexibility seems to be an adaptation to unpredictable environmental conditions, which should be the result of a long-lasting adaptation process. Moreover, the combination of opportunism and modest specialisation should also be a good basis for coping with future changes caused by climate and land-use change.




A mark-recapture study of the nominotypical Erebia pronoe in the Alps was conducted to survey its ecological demands and characteristics. Population structure analysis revealed a combination of protandry (one-week earlier eclosion of males) and serial eclosion. Significant differences between both sexes were found in population density (males: 580/ha & PLUSMN; 37 SE; females: 241/ha & PLUSMN; 66 SE), sex-ratio (2.4) and behaviour (57.7 vs. 11.9% flying). Both sexes used a wide range of nectar plants (Asteraceae, 77.3%; Dipsacaceae, 12.3%; Gentianaceae, 9.7%). The use of nectar plants shows a non-specific spectrum, which, however, completely avoids overlap with the locally co-occurring species Erebia nivalis. Movement patterns show the establishment of homeranges, which significantly limits the migration potential. Due to its broad ecological niche, E. pronoe will probably be able to react plastically to the consequences of climate change. The formation of high population densities, the unconcerned endangerment status, the unspecific resource spectrum and the sedentary character of the species make E. pronoe a potential indicator of the quality and general resource occurrence of alpine rupicolous grasslands. KW - mark-release-recapture KW - movement patterns KW - opportunistic behaviour KW - partial protandry KW - population demography Y1 - 2021 U6 - https://doi.org/10.3390/insects12100896 SN - 2075-4450 VL - 12 IS - 10 PB - MDPI CY - Basel ER -