TY - JOUR A1 - Streich, Rita A1 - Becken, Michael T1 - Electromagnetic fields generated by finite-length wire sources: comparison with point dipole solutions JF - Geophysical prospecting N2 - In present-day land and marine controlled-source electromagnetic (CSEM) surveys, electromagnetic fields are commonly generated using wires that are hundreds of metres long. Nevertheless, simulations of CSEM data often approximate these sources as point dipoles. Although this is justified for sufficiently large source-receiver distances, many real surveys include frequencies and distances at which the dipole approximation is inaccurate. For 1D layered media, electromagnetic (EM) fields for point dipole sources can be computed using well-known quasi-analytical solutions and fields for sources of finite length can be synthesized by superposing point dipole fields. However, the calculation of numerous point dipole fields is computationally expensive, requiring a large number of numerical integral evaluations. We combine a more efficient representation of finite-length sources in terms of components related to the wire and its end points with very general expressions for EM fields in 1D layered media. We thus obtain a formulation that requires fewer numerical integrations than the superposition of dipole fields, permits source and receiver placement at any depth within the layer stack and can also easily be integrated into 3D modelling algorithms. Complex source geometries, such as wires bent due to surface obstructions, can be simulated by segmenting the wire and computing the responses for each segment separately. We first describe our finite-length wire expressions and then present 1D and 3D examples of EM fields due to finite-length sources for typical land and marine survey geometries and discuss differences to point dipole fields. KW - Electromagnetics KW - Mathematical formulation KW - Modelling KW - Numerical study Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2478.2010.00926.x SN - 0016-8025 VL - 59 IS - 2 SP - 361 EP - 374 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Streich, Rita A1 - Becken, Michael A1 - Ritter, Oliver T1 - 2.5D controlled-source EM modeling with general 3D source geometries JF - Geophysics N2 - Most 2.5D controlled-source electromagnetic (CSEM) modeling algorithms presented to date explicitly consider only sources that are point dipoles oriented parallel or perpendicular to the direction of constant conductivity. This makes simulations of complex source geometries expensive, requiring separate evaluations of many point dipole fields, and thus limits the practical applicability of such schemes for simulating and interpreting field data. We present a novel 2.5D CSEM modeling scheme that overcomes this limitation and permits efficient simulations of sources with general shape and orientation by evaluating fields for the entire source at once. We accommodate general sources by using a secondary field approach, in which primary fields are computed for the general source and a 1D background conductivity model. To carry out the required Fourier transforms between space and wavenumber domain using the same fast cosine and sine transform filters as in conventional algorithms, we split the primary and secondary fields into their symmetric and antisymmetric parts. For complex 3D source geometries, this approach is significantly more efficient than previous 2.5D algorithms. Our finite-difference algorithm also includes novel approaches for divergence correction at low frequencies and EM field interpolation across conductivity discontinuities. We describe the modeling scheme and demonstrate its accuracy and efficiency by comparisons of 2.5D-simulated data with 1D and 3D results. Y1 - 2011 U6 - https://doi.org/10.1190/GEO2011-0111.1 SN - 0016-8033 VL - 76 IS - 6 SP - F387 EP - F393 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Streich, Rita A1 - Becken, Michael A1 - Ritter, Oliver T1 - Imaging of CO2 storage sites, geothermal reservoirs, and gas shales using controlled-source magnetotellurics : modeling studies N2 - To balance the steady decrease of conventional hydrocarbon resources, increased utilization of unconventional and new energy resources, such as shale gas and geothermal energy, is required. Also, the geological sequestration of carbon dioxide is being considered as a technology that may temporarily mitigate the effects of CO2 emission. Sites suitable for shale gas production, geothermal exploration, or CO2 sequestration are commonly characterized by electrical resistivities distinctly different from those of the surrounding rocks. Therefore, electromagnetic methods can be viable tools to help identify target sites suitable for exploration, and to monitor reservoirs during energy production or CO2 injection. Among the wide variety of electromagnetic methods available, controlled-source magnetotelluric (CSMT) may be particularly suitable because of (i) its ability to resolve both electrically resistive and conductive structures, (ii) controlled sources offering noise control and thus facilitating surveys in populated regions, and (iii) the potential of penetration throughout the depth range accessible by drilling. Nevertheless, CSMT has not yet been widely employed because of logistical challenges of field operations and the requirement of complex and highly computer-intensive data processing. With these difficulties gradually being mitigated by recent technological developments, CSMT may now be reconsidered as an exploration tool. Here, we investigate by 1D and 3D numerical simulations the feasibility of detecting gas shales and identifying sites eligible for geothermal exploration or CO2 sequestration from CSMT data. We consider surface-to-surface, borehole-to-surface, and cross-hole configurations of the sources and receivers. Results and conclusions on the detectability of the targets of interest are presented for various exploration and monitoring scenarios, which are roughly representative of the geological setting of the North German Basin. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00092819 U6 - https://doi.org/10.1016/j.chemer.2010.05.004 SN - 0009-2819 ER -