TY - JOUR A1 - Steinert, Bastian A1 - Thamsen, Lauritz A1 - Felgentreff, Tim A1 - Hirschfeld, Robert T1 - Object Versioning to Support Recovery Needs Using Proxies to Preserve Previous Development States in Lively JF - ACM SIGPLAN notices N2 - We present object versioning as a generic approach to preserve access to previous development and application states. Version-aware references can manage the modifications made to the target object and record versions as desired. Such references can be provided without modifications to the virtual machine. We used proxies to implement the proposed concepts and demonstrate the Lively Kernel running on top of this object versioning layer. This enables Lively users to undo the effects of direct manipulation and other programming actions. KW - Programming Environments KW - Object Versioning KW - CoExist KW - JavaScript KW - Lively Kernel Y1 - 2015 U6 - https://doi.org/10.1145/2661088.2661093 SN - 0362-1340 SN - 1558-1160 VL - 50 IS - 2 SP - 113 EP - 124 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Steinert, Bastian A1 - Cassou, Damien A1 - Hirschfeld, Robert T1 - CoExist overcoming aversion to change preserving immediate access to source code and run-time information of previous development states JF - ACM SIGPLAN notices N2 - Programmers make many changes to the program to eventually find a good solution for a given task. In this course of change, every intermediate development state can of value, when, for example, a promising ideas suddenly turn out inappropriate or the interplay of objects turns out more complex than initially expected before making changes. Programmers would benefit from tool support that provides immediate access to source code and run-time of previous development states of interest. We present IDE extensions, implemented for Squeak/Smalltalk, to preserve, retrieve, and work with this information. With such tool support, programmers can work without worries because they can rely on tools that help them with whatever their explorations will reveal. They no longer have to follow certain best practices only to avoid undesired consequences of changing code. KW - Design KW - Experimentation KW - Human Factors KW - Continuous Testing KW - Continuous Versioning KW - Debugging KW - Evolution KW - Explore-first Programming KW - Fault Localization KW - Prototyping Y1 - 2013 U6 - https://doi.org/10.1145/2480360.2384591 SN - 0362-1340 VL - 48 IS - 2 SP - 107 EP - 117 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Steinert, Bastian A1 - Hirschfeld, Robert T1 - Applying design knowledge to programming Y1 - 2012 ER - TY - JOUR A1 - Hirschfeld, Robert A1 - Steinert, Bastian A1 - Lincke, Jens T1 - Agile software development in virtual collaboration environments Y1 - 2011 SN - 978-3-642-13756-3 ER - TY - JOUR A1 - Lincke, Jens A1 - Appeltauer, Malte A1 - Steinert, Bastian A1 - Hirschfeld, Robert T1 - An open implementation for context-oriented layer composition in ContextJS JF - Science of computer programming N2 - Context-oriented programming (COP) provides dedicated support for defining and composing variations to a basic program behavior. A variation, which is defined within a layer, can be de-/activated for the dynamic extent of a code block. While this mechanism allows for control flow-specific scoping, expressing behavior adaptations can demand alternative scopes. For instance, adaptations can depend on dynamic object structure rather than control flow. We present scenarios for behavior adaptation and identify the need for new scoping mechanisms. The increasing number of scoping mechanisms calls for new language abstractions representing them. We suggest to open the implementation of scoping mechanisms so that developers can extend the COP language core according to their specific needs. Our open implementation moves layer composition into objects to be affected and with that closer to the method dispatch to be changed. We discuss the implementation of established COP scoping mechanisms using our approach and present new scoping mechanisms developed for our enhancements to Lively Kernel. KW - ContextJS KW - Context-oriented programming KW - Open implementations KW - Dynamic adaptation KW - Scope Y1 - 2011 U6 - https://doi.org/10.1016/j.scico.2010.11.013 SN - 0167-6423 VL - 76 IS - 12 SP - 1194 EP - 1209 PB - Elsevier CY - Amsterdam ER -