TY - CHAP A1 - Thim, Christof A1 - Gronau, Norbert A1 - Haase, Jennifer A1 - Grum, Marcus A1 - Schüffler, Arnulf A1 - Roling, Wiebke A1 - Kluge, Annette ED - Shishkov, Boris T1 - Modeling change in business processes T2 - Business modeling and software design N2 - Business processes are regularly modified either to capture requirements from the organization’s environment or due to internal optimization and restructuring. Implementing the changes into the individual work routines is aided by change management tools. These tools aim at the acceptance of the process by and empowerment of the process executor. They cover a wide range of general factors and seldom accurately address the changes in task execution and sequence. Furthermore, change is only framed as a learning activity, while most obstacles to change arise from the inability to unlearn or forget behavioural patterns one is acquainted with. Therefore, this paper aims to develop and demonstrate a notation to capture changes in business processes and identify elements that are likely to present obstacles during change. It connects existing research from changes in work routines and psychological insights from unlearning and intentional forgetting to the BPM domain. The results contribute to more transparency in business process models regarding knowledge changes. They provide better means to understand the dynamics and barriers of change processes. KW - intentional forgetting KW - routines KW - business processes KW - unlearning Y1 - 2023 SN - 978-3-031-36756-4 SN - 978-3-031-36757-1 U6 - https://doi.org/10.1007/978-3-031-36757-1_1 SP - 3 EP - 17 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Grum, Marcus A1 - Thim, Christof A1 - Roling, Wiebke A1 - Schüffler, Arnulf A1 - Kluge, Annette A1 - Gronau, Norbert ED - Masrour, Tawfik ED - El Hassani, Ibtissam ED - Barka, Noureddine T1 - AI case-based reasoning for artificial neural networks T2 - Artificial intelligence and industrial applications N2 - Faced with the triad of time-cost-quality, the realization of production tasks under economic conditions is not trivial. Since the number of Artificial-Intelligence-(AI)-based applications in business processes is increasing more and more nowadays, the efficient design of AI cases for production processes as well as their target-oriented improvement is essential, so that production outcomes satisfy high quality criteria and economic requirements. Both challenge production management and data scientists, aiming to assign ideal manifestations of artificial neural networks (ANNs) to a certain task. Faced with new attempts of ANN-based production process improvements [8], this paper continues research about the optimal creation, provision and utilization of ANNs. Moreover, it presents a mechanism for AI case-based reasoning for ANNs. Experiments clarify continuously improving ANN knowledge bases by this mechanism empirically. Its proof-of-concept is demonstrated by the example of four production simulation scenarios, which cover the most relevant use cases and will be the basis for examining AI cases on a quantitative level. KW - case-based reasoning KW - neural networks KW - industry 4.0 Y1 - 2023 SN - 978-3-031-43523-2 SN - 978-3-031-43524-9 U6 - https://doi.org/10.1007/978-3-031-43524-9_2 VL - 771 SP - 17 EP - 35 PB - Springer CY - Cham ER - TY - CHAP A1 - Thim, Christof A1 - Grum, Marcus A1 - Schüffler, Arnulf A1 - Roling, Wiebke A1 - Kluge, Annette A1 - Gronau, Norbert ED - Andersen, Ann-Louise ED - Andersen, Rasmus ED - Brunoe, Thomas Ditlev ED - Larsen, Maria Stoettrup Schioenning ED - Nielsen, Kjeld ED - Napoleone, Alessia ED - Kjeldgaard, Stefan T1 - A concept for a distributed Interchangeable knowledge base in CPPS T2 - Towards sustainable customization: cridging smart products and manufacturing systems N2 - As AI technology is increasingly used in production systems, different approaches have emerged from highly decentralized small-scale AI at the edge level to centralized, cloud-based services used for higher-order optimizations. Each direction has disadvantages ranging from the lack of computational power at the edge level to the reliance on stable network connections with the centralized approach. Thus, a hybrid approach with centralized and decentralized components that possess specific abilities and interact is preferred. However, the distribution of AI capabilities leads to problems in self-adapting learning systems, as knowledgebases can diverge when no central coordination is present. Edge components will specialize in distinctive patterns (overlearn), which hampers their adaptability for different cases. Therefore, this paper aims to present a concept for a distributed interchangeable knowledge base in CPPS. The approach is based on various AI components and concepts for each participating node. A service-oriented infrastructure allows a decentralized, loosely coupled architecture of the CPPS. By exchanging knowledge bases between nodes, the overall system should become more adaptive, as each node can “forget” their present specialization. KW - learning KW - distributed knowledge base KW - artificial intelligence KW - CPPS Y1 - 2021 SN - 978-3-030-90699-3 SN - 978-3-030-90702-0 SN - 978-3-030-90700-6 U6 - https://doi.org/10.1007/978-3-030-90700-6_35 SP - 314 EP - 321 PB - Springer CY - Cham ER -