TY - JOUR A1 - Makuch, Martin A1 - Brilliantov, Nikolai V. A1 - Sremcevic, Miodrag A1 - Spahn, Frank A1 - Krivov, Alexander V. T1 - Stochastic circumplanetary dynamics of rotating non-spherical dust particles JF - Planetary and space science N2 - We develop a model of stochastic radiation pressure for rotating non-spherical particles and apply the model to circumplanetary dynamics of dust grains. The stochastic properties of the radiation pressure are related to the ensemble-averaged characteristics of the rotating particles, which are given in terms of the rotational time-correlation function of a grain. We investigate the model analytically and show that an ensemble of particle trajectories demonstrates a diffusion-like behaviour. The analytical results are compared with numerical simulations, performed for the motion of the dusty ejecta from Deimos in orbit around Mars. We find that the theoretical predictions are in a good agreement with the simulation results. The agreement however deteriorates at later time, when the impact of non-linear terms, neglected in the analytic approach, becomes significant. Our results indicate that the stochastic modulation of the radiation pressure can play an important role in the circumplanetary dynamics of dust and may in case of some dusty systems noticeably alter an optical depth. (c) 2006 Elsevier Ltd. All rights reserved. KW - Mars KW - Deimos KW - ejecta KW - stochastics KW - radiation pressure Y1 - 2006 U6 - https://doi.org/10.1016/j.pss.2006.05.006 SN - 0032-0633 VL - 54 IS - 9-10 SP - 855 EP - 870 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Spahn, Frank A1 - Schmidt, Jürgen A1 - Albers, Nicole A1 - Hörning, Marcel A1 - Makuch, Martin A1 - Seiß, Martin A1 - Kempf, Sascha A1 - Srama, Ralf A1 - Dikarev, Valeri A1 - Helfert, Stefan A1 - Moragas-Klostermeyer, Georg A1 - Krivov, Alexander V. A1 - Sremcevic, Miodrag A1 - Tuzzolino, Anthony J. A1 - Economou, Thanasis A1 - Grün, Eberhard T1 - Cassini dust measurements at Enceladus and implications for the origin of the E ring Y1 - 2006 UR - http://www.sciencemag.org/content/311/5766/1416.full U6 - https://doi.org/10.1126/science.1121375 ER - TY - JOUR A1 - Makuch, Martin A1 - Krivov, Alexander V. A1 - Spahn, Frank T1 - Long-term dynamical evolution of dusty ejecta from Deimos N2 - We re-assess expected properties of the presumed dust belt of Mars formed by impact ejecta from Deimos. Previous studies have shown that dynamics of Deimos particles are dominated by two perturbing forces: radiation pressure (RP) and Mars' oblateness (J2). At the same time, they have demonstrated that lifetimes of particles, especially of grains about ten of micrometers in size, may reach more than 10(4) years. On such timescales, the Poynting-Robertson drag (PR) becomes important. Here we provide a study of the dynamics under the combined action of all three perturbing forces. We show that a PR decay of the semimajor axes leads to an adiabatic decrease of amplitudes and periods of oscillations in orbital inclinations predicted in the framework of the underlying RP+J2 problem. Furthermore, we show that smallest of the long-lived Deimos grains (radius approximate to 5-10 mum) may reach a chaotic regime, resulting in unpredictable and abrupt changes of their dynamics. The particles just above that size (approximate to 10- 15 mum) should be the most abundant in the Deimos torus. Our dynamical analysis, combined with a more accurate study of the particle lifetimes, provides corrections to earlier predictions about the dimensions and geometry of the Deimos torus. In addition to a population, appreciably inclined and shifted towards the Sun, the torus should contain a more contracted, less asymmetric, and less tilted component between the orbits of Phobos and Deimos. (C) 2004 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0032-0633 ER -