TY - JOUR A1 - Heger, Tina A1 - Bernard-Verdier, Maud A1 - Gessler, Arthur A1 - Greenwood, Alex D. A1 - Grossart, Hans-Peter A1 - Hilker, Monika A1 - Keinath, Silvia A1 - Kowarik, Ingo A1 - Küffer, Christoph A1 - Marquard, Elisabeth A1 - Mueller, Johannes A1 - Niemeier, Stephanie A1 - Onandia, Gabriela A1 - Petermann, Jana S. A1 - Rillig, Matthias C. A1 - Rodel, Mark-Oliver A1 - Saul, Wolf-Christian A1 - Schittko, Conrad A1 - Tockner, Klement A1 - Joshi, Jasmin Radha A1 - Jeschke, Jonathan M. T1 - Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change JF - Bioscience N2 - Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders. KW - Anthropocene KW - eco-evolutionary experience KW - global change KW - novel ecosystems KW - shifting baselines Y1 - 2019 U6 - https://doi.org/10.1093/biosci/biz095 SN - 0006-3568 SN - 1525-3244 VL - 69 IS - 11 SP - 888 EP - 899 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kayler, Zachary E. A1 - Premke, Katrin A1 - Gessler, Arthur A1 - Gessner, Mark O. A1 - Griebler, Christian A1 - Hilt, Sabine A1 - Klemedtsson, Leif A1 - Kuzyakov, Yakov A1 - Reichstein, Markus A1 - Siemens, Jan A1 - Totsche, Kai-Uwe A1 - Tranvik, Lars A1 - Wagner, Annekatrin A1 - Weitere, Markus A1 - Grossart, Hans-Peter T1 - Integrating Aquatic and Terrestrial Perspectives to Improve Insights Into Organic Matter Cycling at the Landscape Scale JF - Frontiers in Earth Science N2 - Across a landscape, aquatic-terrestrial interfaces within and between ecosystems are hotspots of organic matter (OM) mineralization. These interfaces are characterized by sharp spatio-temporal changes in environmental conditions, which affect OM properties and thus control OM mineralization and other transformation processes. Consequently, the extent of OM movement at and across aquatic-terrestrial interfaces is crucial in determining OM turnover and carbon (C) cycling at the landscape scale. Here, we propose expanding current concepts in aquatic and terrestrial ecosystem sciences to comprehensively evaluate OM turnover at the landscape scale. We focus on three main concepts toward explaining OM turnover at the landscape scale: the landscape spatiotemporal context, OM turnover described by priming and ecological stoichiometry, and anthropogenic effects as a disruptor of natural OM transfer magnitudes and pathways. A conceptual framework is introduced that allows for discussing the disparities in spatial and temporal scales of OM transfer, changes in environmental conditions, ecosystem connectivity, and microbial-substrate interactions. The potential relevance of priming effects in both terrestrial and aquatic systems is addressed. For terrestrial systems, we hypothesize that the interplay between the influx of OM, its corresponding elemental composition, and the elemental demand of the microbial communities may alleviate spatial and metabolic thresholds. In comparison, substrate level OM dynamics may be substantially different in aquatic systems due to matrix effects that accentuate the role of abiotic conditions, substrate quality, and microbial community dynamics. We highlight the disproportionate impact anthropogenic activities can have on OM cycling across the landscape. This includes reversing natural OM flows through the landscape, disrupting ecosystem connectivity, and nutrient additions that cascade across the landscape. This knowledge is crucial for a better understanding of OM cycling in a landscape context, in particular since terrestrial and aquatic compartments may respond differently to the ongoing changes in climate, land use, and other anthropogenic interferences. KW - landscape connectivity KW - organic matter mineralization KW - priming effects KW - ecological stoichiometry KW - aquatic-terrestrial interfaces KW - anthropogenic interferences Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00127 SN - 2296-6463 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Premke, Katrin A1 - Attermeyer, Katrin A1 - Augustin, Jürgen A1 - Cabezas, Alvaro A1 - Casper, Peter A1 - Deumlich, Detlef A1 - Gelbrecht, Jörg A1 - Gerke, Horst H. A1 - Gessler, Arthur A1 - Großart, Hans-Peter A1 - Hilt, Sabine A1 - Hupfer, Michael A1 - Kalettka, Thomas A1 - Kayler, Zachary A1 - Lischeid, Gunnar A1 - Sommer, Michael A1 - Zak, Dominik T1 - The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters JF - Wiley Interdisciplinary Reviews : Water N2 - Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and between both landscape components. Here, we compiled data from the literature on C fluxes across the air–water interface from various landscape components. We simulated C emissions and uptake for five different scenarios which represent a gradient of increasing spatial heterogeneity within a temperate young moraine landscape: (I) a homogeneous landscape with only cropland and large lakes; (II) separation of the terrestrial domain into cropland and forest; (III) further separation into cropland, forest, and grassland; (IV) additional division of the aquatic area into large lakes and peatlands; and (V) further separation of the aquatic area into large lakes, peatlands, running waters, and small water bodies These simulations suggest that C fluxes at the landscape scale might depend on spatial heterogeneity and landscape diversity, among other factors. When we consider spatial heterogeneity and diversity alone, small inland waters appear to play a pivotal and previously underestimated role in landscape greenhouse gas emissions that may be regarded as C hot spots. Approaches focusing on the landscape scale will also enable improved projections of ecosystems’ responses to perturbations, e.g., due to global change and anthropogenic activities, and evaluations of the specific role individual landscape components play in regional C fluxes. WIREs Water 2016, 3:601–617. doi: 10.1002/wat2.1147 Y1 - 2016 U6 - https://doi.org/10.1002/wat2.1147 SN - 2049-1948 SN - 2049-1948 VL - 3 SP - 601 EP - 617 PB - Wiley CY - Hoboken ER -