TY - JOUR A1 - Jetzschmann, Katharina J. A1 - Jagerszki, Gyula A1 - Dechtrirat, Decha A1 - Yarman, Aysu A1 - Gajovic-Eichelmann, Nenad A1 - Gilsing, Hans-Detlev A1 - Schulz, Burkhard A1 - Gyurcsanyi, Robert E. A1 - Scheller, Frieder W. T1 - Vectorially Imprinted Hybrid Nanofilm for Acetylcholinesterase Recognition JF - Advanced functional materials N2 - Effective recognition of enzymatically active tetrameric acetylcholinesterase (AChE) is accomplished by a hybrid nanofilm composed of a propidium-terminated self-assembled monolayer (Prop-SAM) which binds AChE via its peripheral anionic site (PAS) and an ultrathin electrosynthesized molecularly imprinted polymer (MIP) cover layer of a novel carboxylate-modified derivative of 3,4-propylenedioxythiophene. The rebinding of the AChE to the MIP/Prop-SAM nanofilm covered electrode is detected by measuring in situ the enzymatic activity. The oxidative current of the released thiocholine is dependent on the AChE concentration from approximate to 0.04 x 10(-6) to 0.4 x 10(-6)m. An imprinting factor of 9.9 is obtained for the hybrid MIP, which is among the best values reported for protein imprinting. The dissociation constant characterizing the strength of the MIP-AChE binding is 4.2 x 10(-7)m indicating the dominant role of the PAS-Prop-SAM interaction, while the benefit of the MIP nanofilm covering the Prop-SAM layer is the effective suppression of the cross-reactivity toward competing proteins as compared with the Prop-SAM. The threefold selectivity gain provided by i) the shape-specific MIP filter, ii) the propidium-SAM, iii) signal generation only by the AChE bound to the nanofilm shows promise for assessing AChE activity levels in cerebrospinal fluid. KW - acetylcholinesterase KW - biomimetic sensors KW - molecularly imprinted electropolymers KW - peripheral anionic site KW - propidium Y1 - 2015 U6 - https://doi.org/10.1002/adfm.201501900 SN - 1616-301X SN - 1616-3028 VL - 25 IS - 32 SP - 5178 EP - 5183 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yarman, Aysu A1 - Dechtrirat, Decha A1 - Bosserdt, Maria A1 - Jetzschmann, Katharina J. A1 - Gajovic-Eichelmann, Nenad A1 - Scheller, Frieder W. T1 - Cytochrome c-derived hybrid systems based on moleculary imprinted polymers JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - Hybrid architectures which combine a MIP with an immobilized affinity ligand or a biocatalyst sum up the advantages of both components. In this paper, hybrid architectures combining a layer of a molecularly imprinted electropolymer with a mini-enzyme or a self-assembled monolayer will be presented. (i) Microperoxidase-11 (MP-11) catalyzed oxidation of the drug aminopyrine on a product-imprinted sublayer: The peroxide dependent conversion of the analyte aminopyrine takes place in the MP-11 containing layer on top of a product-imprinted electropolymer on the indicator electrode. The hierarchical architecture resulted in the elimination of interfering signals for ascorbic acid and uric acid. An advantage of the new hierarchical structure is the separation of MIP formation by electropolymerization and immobilization of the catalyst. In this way it was for the first time possible to integrate an enzyme with a MIP layer in a sensor configuration. This combination has the potential to be transferred to other enzymes, e.g. P450, opening the way to clinically important analytes. (ii) Epitope-imprinted poly-scopoletin layer for binding of the C-terminal peptide and cytochrome c (Cyt c): The MIP binds both the target peptide and the parent protein almost eight times stronger than the non-imprinted polymer with affinities in the lower micromolar range. Exchange of only one amino acid in the peptide decreases the binding by a factor of five. (iii) MUA-poly-scopoletin MIP for cytochrome c: Cyt c bound to the MIP covered gold electrode exhibits direct electron transfer with a redox potential and rate constant typical for the native protein. The MIP cover layer suppresses the displacement of the target protein by BSA or myoglobin. The combination of protein imprinted polymers with an efficient electron transfer is a new concept for characterizing electroactive proteins such as Cyt c. The competition with other proteins shows that the MIP binds its target Cyt c preferentially and that molecular shape and the charge of protein determine the binding of interfering proteins. KW - Molecularly imprinted polymers KW - Microperoxidase-11 KW - Cytochrome c KW - Catalytically active MIPs KW - Epitope imprinting KW - Monoclonal MIPs Y1 - 2015 U6 - https://doi.org/10.1002/elan.201400592 SN - 1040-0397 SN - 1521-4109 VL - 27 IS - 3 SP - 573 EP - 586 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Dechtrirat, Decha A1 - Gajovic-Eichelmann, Nenad A1 - Wojcik, Felix A1 - Hartmann, Laura A1 - Bier, Frank Fabian A1 - Scheller, Frieder W. T1 - Electrochemical displacement sensor based on ferrocene boronic acid tracer and immobilized glycan for saccharide binding proteins and E. coli JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics N2 - Pathogens such as viruses and bacteria use their envelope proteins and their adhesin lectins to recognize the glycan residues presented on the cell surface of the target tissues. This principle of recognition is used in a new electrochemical displacement sensor for the protein concanavalin A (ConA). A gold electrode was first modified with a self-assembled monolayer of a thiolated mannose/OEG conjugate and a ferrocene boroxol derivative was pre-assembled as reporter molecule onto the mannose surface. The novel tracer molecule based on a 2-hydroxymethyl phenyl boronic acid derivative binds even at neutral pH to the saccharides which could expand the application towards biological samples (i.e., urine and feces). Upon the binding of ConA, the tracer was displaced and washed away from the sensor surface leading to a decrease in the electrochemical signal. Using square wave voltammetry (SWV), the concentration of ConA in the sample solution could be determined in the dynamic concentration range established from 38 nmol L-1 to 5.76 mu mol L-1 with a reproducible detection limit of 1 mu g mL(-1) (38 nmol L-1) based on the signal-to-noise ratio (S/N=3) with fast response of 15 min. The new reporter molecule showed a reduced non-specific displacement by BSA and ribonuclease A. The sensor was also successfully transferred to the first proof of principle for the detection of Escherichia coli exhibiting a detection limit of approximately 6 x 102 cells/mL Specificity of the displacement by target protein ConA and E. coli was demonstrated since the control proteins (i.e., BSA and RNaseA) and the control E. coli strain, which lack of type 1 fimbriae, were ineffective. (C) 2014 Elsevier B.V. All rights reserved. KW - Ferrocene benzoboroxol biosensor KW - Concanavalin A KW - Displacement KW - Escherichia coli KW - Ferrocene boronic acid KW - Self-assembled monolayer Y1 - 2014 U6 - https://doi.org/10.1016/j.bios.2014.02.028 SN - 0956-5663 SN - 1873-4235 VL - 58 SP - 1 EP - 8 PB - Elsevier CY - Oxford ER - TY - THES A1 - Dechtrirat, Decha T1 - Combination of self-assembled monolayers (SAMs) and molecularly imprinted polymers (MIPs) in biomimetic sensors Y1 - 2013 CY - Potsdam ER -