TY - JOUR A1 - Collado-Fregoso, Elisa A1 - Pugliese, Silvina N. A1 - Wojcik, Mariusz A1 - Benduhn, Johannes A1 - Bar-Or, Eyal A1 - Perdigon-Toro, Lorena A1 - Hörmann, Ulrich A1 - Spoltore, Donato A1 - Vandewal, Koen A1 - Hodgkiss, Justin M. A1 - Neher, Dieter T1 - Energy-gap law for photocurrent generation in fullerene-based organic solar cells BT - the case of low-donor-content blends JF - Journal of the American Chemical Society N2 - The involvement of charge-transfer (CT) states in the photogeneration and recombination of charge carriers has been an important focus of study within the organic photovoltaic community. In this work, we investigate the molecular factors determining the mechanism of photocurrent generation in low-donor-content organic solar cells, where the active layer is composed of vacuum-deposited C-60 and small amounts of organic donor molecules. We find a pronounced decline of all photovoltaic parameters with decreasing CT state energy. Using a combination of steady-state photocurrent measurements and time-delayed collection field experiments, we demonstrate that the power conversion efficiency, and more specifically, the fill factor of these devices, is mainly determined by the bias dependence of photocurrent generation. By combining these findings with the results from ultrafast transient absorption spectroscopy, we show that blends with small CT energies perform poorly because of an increased nonradiative CT state decay rate and that this decay obeys an energy-gap law. Our work challenges the common view that a large energy offset at the heterojunction and/or the presence of fullerene clusters guarantee efficient CT dissociation and rather indicates that charge generation benefits from high CT state energies through a slower decay to the ground state. Y1 - 2019 U6 - https://doi.org/10.1021/jacs.8b09820 SN - 0002-7863 VL - 141 IS - 6 SP - 2329 EP - 2341 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Shivhare, Rishi A1 - Erdmann, Tim A1 - Hoermann, Ulrich A1 - Collado-Fregoso, Elisa A1 - Zeiske, Stefan A1 - Benduhn, Johannes A1 - Ullbrich, Sascha A1 - Huebner, Rene A1 - Hambsch, Mike A1 - Kiriy, Anton A1 - Voit, Brigitte A1 - Neher, Dieter A1 - Vandewal, Koen A1 - Mannsfeld, Stefan C. B. T1 - Alkyl Branching Position in Diketopyrrolopyrrole Polymers BT - Interplay between Fibrillar Morphology and Crystallinity and Their Effect on Photogeneration and Recombination in Bulk-Heterojunction Solar Cells JF - Chemistry of materials : a publication of the American Chemical Society N2 - Diketopyrrolopyrrole (DPP)-based donor acceptor copolymers have gained a significant amount of research interest in the organic electronics community because of their high charge carrier mobilities in organic field-effect transistors (OFETs) and their ability to harvest near-infrared (NIR) photons in solar cells. In this study, we have synthesized four DPP based donor-acceptor copolymers with variations in the donor unit and the branching point of the solubilizing alkyl chains (at the second or sixth carbon position). Grazing incidence wide-angle X-ray scattering (GIWAXS) results suggest that moving the branching point further away from the polymer backbone increases the tendency for aggregation and yields polymer phases with a higher degree of crystallinity (DoC). The polymers were blended with PC70BM and used as active layers in solar cells. A careful analysis of the energetics of the neat polymer and blend films reveals that the charge-transfer state energy (E-CT) of the blend films lies exceptionally close to the singlet energy of the donor (E-D*), indicating near zero electron transfer losses. The difference between the optical gap and open-circuit voltage (V-OC) is therefore determined to be due to rather high nonradiative 418 +/- 13 mV) and unavoidable radiative voltage losses (approximate to 255 +/- 8 mV). Even though the four materials have similar optical gaps, the short-circuit current density (J(SC)) covers a vast span from 7 to 18 mA cm(-2) for the best performing system. Using photoluminescence (PL) quenching and transient charge extraction techniques, we quantify geminate and nongeminate losses and find that fewer excitons reach the donor-acceptor interface in polymers with further away branching points due to larger aggregate sizes. In these material systems, the photogeneration is therefore mainly limited by exciton harvesting efficiency. Y1 - 2018 U6 - https://doi.org/10.1021/acs.chemmater.8b02739 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 19 SP - 6801 EP - 6809 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wade, Jessica A1 - Wood, Sebastian A1 - Collado-Fregoso, Elisa A1 - Heeney, Martin A1 - Durrant, James A1 - Kim, Ji-Seon T1 - Impact of Fullerene Intercalation on Structural and Thermal Properties of Organic Photovoltaic Blends JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - The performance of organic photovoltaic blend devices is critically dependent on the polymer:fullerene interface. These interfaces are expected to impact the structural and thermal properties of the polymer with regards to the conjugated backbone planarity and transition temperatures during annealing/cooling processes. Here, we report the impact of fullerene intercalation on structural and thermal properties of poly(2,5-bis(3-tetradecylthiophen-2-yOthieno[3,2-b]thiophene (PBTTT), a highly stable material known to exhibit liquid crystalline behavior. We undertake a detailed systematic study of the extent of intercalation in the PBTTT:fullerene blend, considering the use of four different fullerene derivatives and also varying the loading ratios. Resonant Raman spectroscopy allows morphology in situ during controlled heating and cooling. We find that small fullerene molecules readily intercalate into PBTTT crystallites, resulting in a planarization of the polymer backbone, but high fullerene loading ratios or larger fullerenes result in nonintercalated domains. During cooling from melt, nonintercalated blend films are found to return to their original morphology and reproduce all thermal transitions on cooling with minimal hysteresis. Intercalated blend films show significant hysteresis on cooling due to the crystallized fullerene attempting to reintercalate. The strongest hysteresis is for intercalated blend films with excess fullerene loading ratio, which form a distinct nanoribbon morphology and exhibit a reduced geminate recombination rate. These results reveal that careful consideration should be taken during device fabrication, as postdeposition thermal treatments significantly impact the charge generation and recombination dynamics. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcc.7b05893 SN - 1932-7447 VL - 121 SP - 20976 EP - 20985 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Collado-Fregoso, Elisa A1 - Hood, Samantha N. A1 - Shoaee, Safa A1 - Schröder, Bob C. A1 - McCulloch, Iain A1 - Kassal, Ivan A1 - Neher, Dieter A1 - Durrant, James R. T1 - Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited JF - The journal of physical chemistry letters N2 - In this Letter, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and nonintercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the nonintercalated system and almost vanishes when energetic disorder is included in the model. Despite these differences, both femtosecond-resolved transient absorption spectroscopy (TAS) and time-delayed collection field (TDCF) exhibit extensive first-order losses in both systems, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene-aggregated domains (1:4 PBTTT:PC70BM) is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short-circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpclett.7b01571 SN - 1948-7185 VL - 8 SP - 4061 EP - 4068 PB - American Chemical Society CY - Washington ER -