TY - JOUR A1 - Schultze, Dina A1 - Wirth, Richard A1 - Wunder, Bernd A1 - Loges, Anselm A1 - Wilke, Max A1 - Franz, Gerhard T1 - Corundum-quartz metastability BT - the influence of a nanometer-sized phase on mineral equilibria in the system Al2O3-SiO2-H2O JF - Contributions to mineralogy and petrology N2 - The metastable paragenesis of corundum and quartz is rare in nature but common in laboratory experiments where according to thermodynamic predictions aluminum-silicate polymorphs should form. We demonstrate here that the existence of a hydrous, silicon-bearing, nanometer-thick layer (called "HSNL") on the corundum surface can explain this metastability in experimental studies without invoking unspecific kinetic inhibition. We investigated experimentally formed corundum reaction products synthesized during hydrothermal and piston-cylinder experiments at 500-800 degrees C and 0.25-1.8 GPa and found that this HSNL formed inside and on the corundum crystals, thereby controlling the growth behavior of its host. The HSNL represents a substitution of Al with Si and H along the basal plane of corundum. Along the interface of corundum and quartz, the HSNL effectively isolates the bulk phases corundum and quartz from each other, thus apparently preventing their reaction to the stable aluminum silicate. High temperatures and prolonged experimental duration lead to recrystallization of corundum including the HSNL and to the formation of quartz + fluid inclusions inside the host crystal. This process reduces the phase boundary area between the bulk phases, thereby providing further opportunity to expand their coexistence. In addition to its small size, its transient nature makes it difficult to detect the HSNL in experiments and even more so in natural samples. Our findings emphasize the potential impact of nanometer-sized phases on geochemical reaction pathways and kinetics under metamorphic conditions in one of the most important chemical systems of the Earth's crust. KW - Experimental KW - Metastability KW - Corundum KW - Quartz KW - Nanolayers KW - Aluminium– silicates Y1 - 2021 U6 - https://doi.org/10.1007/s00410-021-01786-5 SN - 0010-7999 SN - 1432-0967 VL - 176 IS - 4 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Klemme, Stephan A1 - Feldhaus, Michael A1 - Potapkin, Vasily A1 - Wilke, Max A1 - Borchert, Manuela A1 - Louvel, Marion A1 - Loges, Anselm A1 - Rohrbach, Arno A1 - Weitkamp, Petra A1 - Welter, Edmund A1 - Kokh, Maria A. A1 - Schmidt, Christian A1 - Testemale, Denis T1 - A hydrothermal apparatus for x-ray absorption spectroscopy of hydrothermal fluids at DESY JF - Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques N2 - We present a new autoclave that enables in situ characterization of hydrothermal fluids at high pressures and high temperatures at synchrotron x-ray radiation sources. The autoclave has been specifically designed to enable x-ray absorption spectroscopy in fluids with applications to mineral solubility and element speciation analysis in hydrothermal fluids in complex compositions. However, other applications, such as Raman spectroscopy, in high-pressure fluids are also possible with the autoclave. First experiments were run at pressures between 100 and 600 bars and at temperatures between 25 degrees C and 550 degrees C, and preliminary results on scheelite dissolution in fluids of different compositions show that the autoclave is well suited to study the behavior of ore-forming metals at P-T conditions relevant to the Earth's crust. Y1 - 2021 U6 - https://doi.org/10.1063/5.0044767 SN - 0034-6748 SN - 1089-7623 VL - 92 IS - 6 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Cerantola, Valerio A1 - Wilke, Max A1 - Kantor, Innokenty A1 - Ismailova, Leyla A1 - Kupenko, Ilya A1 - McCammon, Catherine A1 - Pascarelli, Sakura A1 - Dubrovinsky, Leonid S. T1 - Experimental investigation of FeCO3 (siderite) stability in Earth's lower mantle using XANES spectroscopy JF - American mineralogist : an international journal of earth and planetary materials N2 - We studied FeCO3 using Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy at pressures up to 54 GPa and temperatures above 2000 K. First-principles calculations of Fe at the K-edge in FeCO3 were performed to support the interpretation of the XANES spectra. The variation of iron absorption edge features with pressure and temperature in FeCO3 matches well with recently reported observations on FeCO3 at extreme conditions, and provides new insight into the stability of Fe-carbonates in Earth's mantle. Here we show that at conditions of the mid-lower mantle, ~50 GPa and ~2200 K, FeCO3 melts and partially decomposes to high-pressure Fe3O4. Carbon (diamond) and oxygen are also inferred products of the reaction. We constrained the thermodynamic phase boundary between crystalline FeCO3 and melt to be at 51(1) GPa and ~1850 K. We observe that at 54(1) GPa, temperature-induced spin crossover of Fe2+ takes place from low to high spin such that at 1735(100) K, all iron in FeCO3 is in the high-spin state. A comparison between experiment and theory provides a more detailed understanding of FeCO3 decomposition observed in X-ray absorption spectra and helps to explain spectral changes due to pressure-induced spin crossover in FeCO3 at ambient temperature. KW - Deep carbon cycle KW - siderite KW - decomposition KW - melting KW - spin transition KW - Earth in Five Reactions: A Deep Carbon Perspective Y1 - 2019 U6 - https://doi.org/10.2138/am-2019-6428 SN - 0003-004X SN - 1945-3027 VL - 104 IS - 8 SP - 1083 EP - 1091 PB - Mineralogical Society of America CY - Chantilly ER - TY - JOUR A1 - Taran, Michail N. A1 - Nunez Valdez, Maribel A1 - Efthimiopoulos, Ilias A1 - Müller, J. A1 - Reichmann, Hans-Josef A1 - Wilke, Max A1 - Koch-Müller, Monika T1 - Spectroscopic and ab initio studies of the pressure-induced Fe2+ high-spin-to-low-spin electronic transition in natural triphylite-lithiophilite JF - Physics and Chemistry of Minerals N2 - Using optical absorption and Raman spectroscopic measurements, in conjunction with the first-principles calculations, a pressure-induced high-spin (HS)-to-low-spin (LS) state electronic transition of Fe2+ (M2-octahedral site) was resolved around 76-80GPa in a natural triphylite-lithiophilite sample with chemical composition (LiFe0.7082+Mn0.292PO4)-Li-M1-Fe-M2 (theoretical composition (LiFe0.52+Mn0.5PO4)-Li-M1-Fe-M2). The optical absorption spectra at ambient conditions consist of a broad doublet band with two constituents (1) (similar to 9330cm(-1)) and (2) (similar to 7110cm(-1)), resulting from the electronic spin-allowed transition (T2gEg)-T-5-E-5 of octahedral (HSFe2+)-Fe-M2. Both (1) and (2) bands shift non-linearly with pressure to higher energies up to similar to 55GPa. In the optical absorption spectrum measured at similar to 81GPa, the aforementioned HS-related bands disappear, whereas a new broadband with an intensity maximum close to 16,360cm(-1) appears, superimposed on the tail of the high-energy ligand-to-metal O2-Fe2+ charge-transfer absorption edge. We assign this new band to the electronic spin-allowed dd-transition (1)A(1g)(1)T(1g) of LS Fe2+ in octahedral coordination. The high-pressure Raman spectra evidence the Fe2+ HS-to-LS transition mainly from the abrupt shift of the P-O symmetric stretching modes to lower frequencies at similar to 76GPa, the highest pressure achieved in the Raman spectroscopic experiments. Calculations indicated that the presence of Mn-M2(2+) simply shifts the isostructural HS-to-LS transition to higher pressures compared to the triphylite Fe-M2(2+) end-member, in qualitative agreement with our experimental observations. KW - Phosphates KW - Triphylite KW - Raman KW - Infrared KW - Optical absorption spectroscopy KW - High pressure KW - Spin transition KW - DFT Y1 - 2019 U6 - https://doi.org/10.1007/s00269-018-1001-y SN - 0342-1791 SN - 1432-2021 VL - 46 IS - 3 SP - 245 EP - 258 PB - Springer CY - New York ER - TY - JOUR A1 - Petitgirard, Sylvian A1 - Sahle, C. J. A1 - Weis, C. A1 - Gilmore, K. A1 - Spiekermann, Georg A1 - Tse, J. S. A1 - Wilke, Max A1 - Cavallari, C. A1 - Cerantola, V A1 - Sternemann, Christian T1 - Magma properties at deep Earth’s conditions from electronic structure of silica JF - Geochemical perspectives letters N2 - SiO(2 )is the main component of silicate melts and thus controls their network structure and physical properties. The compressibility and viscosities of melts at depth are governed by their short range atomic and electronic structure. We measured the O K-edge and the Si L-2,L-3-edge in silica up to 110 GPa using X-ray Raman scattering spectroscopy, and found a striking match to calculated spectra based on structures from molecular dynamic simulations. Between 20 and 27 GPa, Si-[4] species are converted into a mixture of Si-[5] and Si-[6] species and between 60 and 70 GPa, Si-[6] becomes dominant at the expense of Si-[5] with no further increase up to at least 110 GPa. Coordination higher than 6 is only reached beyond 140 GPa, corroborating results from Brillouin scattering. Network modifying elements in silicate melts may shift this change in coordination to lower pressures and thus magmas could be denser than residual solids at the depth of the core-mantle boundary. Y1 - 2019 U6 - https://doi.org/10.7185/geochemlet.1902 SN - 2410-339X SN - 2410-3403 VL - 9 SP - 32 EP - 37 PB - Association of Geochemistry CY - Paris ER - TY - JOUR A1 - Spiekermann, Georg A1 - Harder, M. A1 - Gilmore, Keith A1 - Zalden, Peter A1 - Sahle, Christoph J. A1 - Petitgirard, Sylvain A1 - Wilke, Max A1 - Biedermann, Nicole A1 - Weis, Thomas A1 - Morgenroth, Wolfgang A1 - Tse, John S. A1 - Kulik, E. A1 - Nishiyama, Norimasa A1 - Yavaş, Hasan A1 - Sternemann, Christian T1 - Persistent Octahedral Coordination in Amorphous GeO₂ Up to 100 GPa by Kβ'' X-Ray Emission Spectroscopy JF - Physical Review X N2 - We measure valence-to-core x-ray emission spectra of compressed crystalline GeO₂ up to 56 GPa and of amorphous GeO₂ up to 100 GPa. In a novel approach, we extract the Ge coordination number and mean Ge-O distances from the emission energy and the intensity of the Kβ'' emission line. The spectra of high-pressure polymorphs are calculated using the Bethe-Salpeter equation. Trends observed in the experimental and calculated spectra are found to match only when utilizing an octahedral model. The results reveal persistent octahedral Ge coordination with increasing distortion, similar to the compaction mechanism in the sequence of octahedrally coordinated crystalline GeO₂ high-pressure polymorphs. KW - rutile-type KW - glass KW - crystalline KW - pressures KW - complexes KW - silicon KW - oxygen KW - SIO₂ KW - MO KW - CU Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevX.9.011025 SN - 2469-9926 SN - 0556-2791 SN - 1050-2947 SN - 1094-1622 VL - 9 IS - 1 PB - American Physical Society by the American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Benard, Antoine A1 - Klimm, Kevin A1 - Woodland, Alan B. A1 - Arculus, Richard J. A1 - Wilke, Max A1 - Botcharnikov, Roman E. A1 - Shimizu, Nobumichi A1 - Nebel, Oliver A1 - Rivard, Camille A1 - Ionov, Dmitri A. T1 - Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas JF - Nature Communications N2 - Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle. Measurements of sulfur (S) valence state in sub-arc mantle peridotites identify sulfate, both as crystalline anhydrite (CaSO4) and dissolved SO42- in spinel-hosted glass (formerly melt) inclusions. Copper-rich sulfide precipitates in the inclusions and increased Fe3+/Sigma Fe in spinel record a S6+-Fe2+ redox coupling during melt percolation through the sub-arc mantle. Sulfate-rich glass inclusions exhibit high U/Th, Pb/Ce, Sr/Nd and delta S-34 (+ 7 to + 11%), indicating the involvement of dehydration products of serpentinised slab rocks in their parental melt sources. These observations provide a link between liberated slab components and oxidised arc magmas. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-05804-2 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kutzschbach, Martin A1 - Guttmann, Peter A1 - Marquardt, K. A1 - Werner, S. A1 - Henzler, K. D. A1 - Wilke, Max T1 - A transmission x-ray microscopy and NEXAFS approach for studying corroded silicate glasses at the nanometre scale JF - European journal of glass science and technology / Deutsche Glastechnische Gesellschaft (DGG) and the Society of Glass Technology (SGT). B, Physics and chemistry of glasses N2 - In this study transmission X-ray microscopy (TXM) was tested as a method to investigate the chemistry and structure of corroded silicate glasses at the nanometer scale. Three different silicate glasses were altered in static corrosion experiments for 1-336 hours at temperatures between 60 degrees C and 85 degrees C using a 25% HCl solution. Thin lamellas were cut perpendicular to the surface of corroded glass monoliths and were analysed with conventional TEM as well as with TXM. By recording optical density profiles at photon energies around the Na and O K-edges, the shape of the corrosion rim/pristine glass interfaces and the thickness of the corrosion rims has been determined. Na and O near-edge X-ray absorption fine-structure spectra (NEXAFS) were obtained without inducing irradiation damage and have been used to detect chemical changes in the corrosion rims. Spatially resolved NEXAFS spectra at the O K-edge provided insight to structural changes in the corrosion layer on the atomic scale. By comparison to O K-edge spectra of silicate minerals and (hydrous) albite glass as well as to O K-edge NEXAFS of model structures simulated with ab initio calculations, evidence is provided that changes of the fine structure at the O K-edge are assigned to the formation of siloxane groups in the corrosion rim. Y1 - 2018 U6 - https://doi.org/10.13036/17533562.59.1.043 SN - 1753-3562 VL - 59 IS - 1 SP - 11 EP - 26 PB - Society of Glass Technology CY - Sheffield ER - TY - JOUR A1 - Dietrich, Marcel A1 - Behrens, Harald A1 - Wilke, Max T1 - A new optical cell for in situ Raman spectroscopy, and its application to study sulfur-bearing fluids at elevated pressures and temperatures JF - American mineralogist : an international journal of earth and planetary materials N2 - Sulfur is an important component in volcanic gases at the Earth surface but also present in the deep Earth in hydrothermal or magmatic fluids. Little is known about the evolution of such fluids during ascent in the crust. A new optical cell was developed for in situ Raman spectroscopic investigations on fluids allowing abrupt or continuous changes of pressure up to 200 MPa at temperatures up to 750 degrees C. The concept is based on a flexible gold bellow, which separates the sample fluid from the pressure medium water. To avoid reactions between aggressive fluids and the pressure cell, steel components in contact with the fluid are shielded by gold foil. The cell was tested to study redox reactions in fluids using aqueous ammonium sulfate solutions as a model system. During heating at constant pressure of 130 MPa, sulfate ions transform first to HSO4- ions and then to molecular units such as H2SO4. Variation of pressure shows that the stability of sulfate species relies on fluid density, i.e., highly charged species are stable only in high-density fluids. Partial decomposition of ammonium was evident above 550 degrees C by the occurrence of a nitrogen peak in the Raman spectra. Reduced sulfur species were observed above 700 degrees C by Raman signals near 2590 cm(-1) assigned to HS- and H2S. No clear evidence for the formation of sulfur dioxide was found in contrary to previous studies on aqueous H2SO4, suggesting very reducing conditions in our experiments. Fluid-mineral interaction was studied by inserting into the cell a small, semi-open capsule filled with a mixture of pyrite and pyrrhotite. Oxidation of the sample assembly was evident by transformation of pyrite to pyrrhotite. As a consequence, sulfide species were observed in the fluid already at temperatures of similar to 600 degrees C. KW - In situ Raman spectroscopy KW - fluids KW - decompression KW - optical cell KW - sulfur speciation KW - redox reactions Y1 - 2018 U6 - https://doi.org/10.2138/am-2018-6244 SN - 0003-004X SN - 1945-3027 VL - 103 IS - 3 SP - 418 EP - 429 PB - Mineralogical Society of America CY - Chantilly ER - TY - JOUR A1 - Wilke, Max T1 - X-Ray Absorption Spectroscopy Measurements JF - Magmas Under Pressure : Advances in High-Pressure Experiments on Structure and Properties of Melts N2 - An overview is given on the current state of X-ray absorption measurements on silicate melts and glasses. The challenges, limitations, and achievements of analyzing X-ray absorption spectra measured in liquids to determine structural properties of major and minor elements in magmas are described, with particular focus on describing non-Gaussian pair distribution functions in highly disordered glasses and melts, measured at in situ conditions. This includes a discussion on the progress of combining experiments with data from molecular dynamics simulations. For the measurements at conditions of the deep Earth, various experimental approaches and necessities are discussed and two examples are described in more detail. Finally, the achievements and prospects are presented for measuring X-ray absorption spectra indirectly by X-ray Raman scattering. Y1 - 2018 SN - 978-0-12-811274-8 SN - 978-0-12-811301-1 U6 - https://doi.org/10.1016/B978-0-12-811301-1.00006-X SP - 155 EP - 178 PB - Elsevier CY - Amsterdam ER -