TY - GEN A1 - Peng, Lei A1 - Yarman, Aysu A1 - Jetzschmann, Katharina J. A1 - Jeoung, Jae-Hun A1 - Schad, Daniel A1 - Dobbek, Holger A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Molecularly imprinted electropolymer for a hexameric heme protein with direct electron transfer and peroxide electrocatalysis N2 - For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of −184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 362 KW - molecularly imprinted polymers KW - self-assembled monolayer KW - direct electron transfer KW - hydrogen peroxide KW - bioelectrocatalysis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400627 ER - TY - JOUR A1 - Pinyou, Piyanut A1 - Ruff, Adrian A1 - Poeller, Sascha A1 - Alsaoub, Sabine A1 - Leimkühler, Silke A1 - Wollenberger, Ursula A1 - Schuhmann, Wolfgang T1 - Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers JF - Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society N2 - Phenothiazine-modified redox hydrogels were synthesized and used for the wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces. The effects of the pH value and electrode surface modification on the biocatalytic activity of the layers were studied in the presence of vanillin as the substrate. The enzyme electrodes were successfully employed as bioanodes in vanillin/O-2 biofuel cells in combination with a high potential bilirubin oxidase biocathode. Open circuit voltages of around 700 mV could be obtained in a two compartment biofuel cell setup. Moreover, the use of a rather hydrophobic polymer with a high degree of crosslinking sites ensures the formation of stable polymer/enzyme films which were successfully used as bioanode in membrane-less biofuel cells. (C) 2015 Elsevier B.V. All rights reserved. KW - Aldehyde oxidoreductase KW - Enzyme electrode KW - Redox polymer KW - Phenothiazine KW - Biosensor KW - Biofuel cell Y1 - 2016 U6 - https://doi.org/10.1016/j.bioelechem.2015.12.005 SN - 1567-5394 SN - 1878-562X VL - 109 SP - 24 EP - 30 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Zeng, Ting A1 - Frasca, Stefano A1 - Rumschöttel, Jens A1 - Koetz, Joachim A1 - Leimkühler, Silke A1 - Wollenberger, Ursula T1 - Role of Conductive Nanoparticles in the Direct Unmediated Bioelectrocatalysis of Immobilized Sulfite Oxidase JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis KW - Direct electron transfer KW - Protein voltammetry KW - Human sulfite oxidase KW - Bioelectrocatalysis KW - Nanoparticles Y1 - 2016 U6 - https://doi.org/10.1002/elan.201600246 SN - 1040-0397 SN - 1521-4109 VL - 28 SP - 2303 EP - 2310 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Dongmo, Saustin A1 - Leyk, Janina A1 - Dosche, Carsten A1 - Richter-Landsberg, Christiane A1 - Wollenberger, Ursula A1 - Wittstock, Gunther T1 - Electrogeneration of O-2(center dot-) and H2O2 Using Polymer-modified Microelectrodes in the Environment of Living Cells JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - Microelectrodes modified with electropolymerized plumbagin (PLG) were used for the generation of superoxide radical (O-2(center dot-)) and hydrogen peroxide (H2O2) during oxygen reduction reaction (ORR) in an aqueous medium, specifically in serum-free cell culture media. This is enabled by the specific design of a polymer film on the microelectrode. The generation and diffusion of O-2(center dot-) during electrocatalytic ORR at a positionable PLG polymer-modified microelectrode was followed by fluorescence microscopy with the selective dye 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and by amperometric detection using a cytochrome c-modified electrode at + 0.13 V. H2O2 production, either by direct oxygen reduction or as product of O-2(center dot-) disproportionation, was monitored by the reaction with Amplex UltraRed. The PLG polymer-modified microelectrodes were used to expose mammalian B6-RPE07 retinal cells to defined local fluxes of reactive oxygen species (ROS), and cellular responses and morphological alterations were observed. The use of a controllable source of ROS opens many possibilities to study how living cells respond to the presence of a certain flux of specific ROS. KW - reactive oxygen species KW - microelectrode KW - scanning electrochemical microscopy KW - biosensor KW - polymer-modified electrode KW - oxygen reduction reaction Y1 - 2016 U6 - https://doi.org/10.1002/elan.201600267 SN - 1040-0397 SN - 1521-4109 VL - 28 SP - 2400 EP - 2407 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wettstein, Christoph A1 - Kano, Kenji A1 - Schaefer, Daniel A1 - Wollenberger, Ursula A1 - Lisdat, Fred T1 - Interaction of Flavin-Dependent Fructose Dehydrogenase with Cytochrome c as Basis for the Construction of Biomacromolecular Architectures on Electrodes JF - Analytical chemistry N2 - The creation of electron transfer (ET) chains based on the defined arrangement of enzymes and redox proteins on electrode surfaces represents an interesting approach within the field of bioelectrocatalysis. In this study, we investigated the ET reaction of the flavin-dependent enzyme fructose dehydrogenase (FDH) with the redox protein cytochrome c (cyt c). Two different pH optima were found for the reaction in acidic and neutral solutions. When cyt c was adsorbed on an electrode surface while the enzyme remained in solution, ET proceeded efficiently in media of neutral pH. Interprotein ET was also observed in acidic media; however, it appeared to be less efficient. These findings suggest that two different ET pathways between the enzyme and cyt c may occur. Moreover, cyt c and FDH were immobilized in multiple layers on an electrode surface by means of another biomacromolecule: DNA (double stranded) using the layer -by -layer technique. The biprotein multilayer architecture showed a catalytic response in dependence on the fructose concentration, indicating that the ET reaction between both proteins is feasible even in the immobilized state. The electrode showed a defined response to fructose and a good storage stability. Our results contribute to the better understanding of the ET reaction between FDH and cyt c and provide the basis for the creation of all-biomolecule based fructose sensors the sensitivity of which can be controlled by the layer preparation. Y1 - 2016 U6 - https://doi.org/10.1021/acs.analchem.6b00815 SN - 0003-2700 SN - 1520-6882 VL - 88 SP - 6382 EP - 6389 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Czolkos, Ilja A1 - Dock, Eva A1 - Tonning, Erik A1 - Christensen, Jakob A1 - Winther-Nielsen, Margrethe A1 - Carlsson, Charlotte A1 - Mojzikova, Renata A1 - Skladal, Petr A1 - Wollenberger, Ursula A1 - Norgaard, Lars A1 - Ruzgas, Tautgirdas A1 - Emneus, Jenny T1 - Prediction of wastewater quality using amperometric bioelectronic tongues JF - Marine policy N2 - Wastewater samples from a Swedish chemi-thermo-mechanical pulp (CTMP) mill collected at different purification stages in a wastewater treatment plant (WWTP) were analyzed with an amperometric enzyme-based biosensor array in a flow-injection system. In order to resolve the complex composition of the wastewater, the array consists of several sensing elements which yield a multidimensional response. We used principal component analysis (PCA) to decompose the array's responses, and found that wastewater with different degrees of pollution can be differentiated. With the help of partial least squares regression (PLS-R), we could link the sensor responses to the toxicity parameter, as well as to global organic pollution parameters (COD, BOD, and TOC). From investigating the influences of individual sensors in the array, it was found that the best models were in most cases obtained when all sensors in the array were included in the PLS-R model. We find that fast simultaneous determination of several global environmental parameters characterizing wastewaters is possible with this kind of biosensor array, in particular because of the link between the sensor responses and the biological effect onto the ecosystem into which the wastewater would be released. In conjunction with multivariate data analysis tools, there is strong potential to reduce the total time until a result is yielded from days to a few minutes. KW - Biosensor array KW - Electronic tongue KW - Amperometric sensor KW - Screen-printed electrode KW - Multivariate data analysis KW - Chemometrics KW - Wastewater KW - Toxicity KW - Phenolic compounds Y1 - 2016 U6 - https://doi.org/10.1016/j.bios.2015.08.055 SN - 0956-5663 SN - 1873-4235 VL - 75 SP - 375 EP - 382 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hassan, Rabeay Y. A. A1 - Wollenberger, Ursula T1 - Mediated bioelectrochemical system for biosensing the cell viability of Staphylococcus aureus JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis N2 - Staphylococcus aureus is one of the most dangerous human pathogens and is the cause of numerous illnesses ranging from moderate skin infections to life-threatening diseases. Despite advances made in identifying microorganisms, rapid detection methods for the viability of bacteria are still missing. Here, we report a rapid electrochemical assay for cell viability combining the use of double redox mediators and multiwall carbon nanotubes-screen printed electrodes (MWCNTs-SPE), ferricyanide (FCN) and 2,6-dichlorophenolindophenol (DCIP), which served as electron shuttle to enable the bacterial-electrode communications. The current originating from the metabolically active cells was recorded for probing the activity of the intracellular redox centers. Blocking of the respiratory chain pathways with electron transfer inhibitors demonstrated the involvement of the electron transport chain in the reaction. A good correlation between the number of the metabolically active cells and the current was obtained. The proposed assay has been exploited for monitoring cell proliferation of S. aureus during the growth. The sensitivity of the detection method reached 0.1 OD600. Therefore, the technique described is promising for estimating the cell number, measuring the cell viability, and probing intracellular redox center(s). KW - Microbial electrochemistry KW - Pathogenic detection KW - Probing living Staphylococcus aureus KW - CNTs-based screen printed electrodes Y1 - 2016 U6 - https://doi.org/10.1007/s00216-015-9134-z SN - 1618-2642 SN - 1618-2650 VL - 408 SP - 579 EP - 587 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Cazelles, R. A1 - Lalaoui, N. A1 - Hartmann, Tobias A1 - Leimkühler, Silke A1 - Wollenberger, Ursula A1 - Antonietti, Markus A1 - Cosnier, S. T1 - Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET) JF - Polymer : the international journal for the science and technology of polymers KW - Bioinformatic KW - Bioelectrocatalysis KW - Electron transfer KW - Dehydrogenase KW - Nicotinamide Y1 - 2016 U6 - https://doi.org/10.1016/j.bios.2016.04.078 SN - 0956-5663 SN - 1873-4235 VL - 85 SP - 90 EP - 95 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Peng, Lei A1 - Yarman, Aysu A1 - Jetzschmann, Katharina J. A1 - Jeoung, Jae-Hun A1 - Schad, Daniel A1 - Dobbek, Holger A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis JF - SENSORS N2 - For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of -184.4 +/- 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). KW - hydrogen peroxide KW - bioelectrocatalysis KW - molecularly imprinted polymers KW - direct electron transfer KW - self-assembled monolayer Y1 - 2016 U6 - https://doi.org/10.3390/s16030272 SN - 1424-8220 VL - 16 SP - 1343 EP - 1364 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zeng, Ting A1 - Pankratov, Dmitry A1 - Falk, Magnus A1 - Leimkühler, Silke A1 - Shleev, Sergey A1 - Wollenberger, Ursula T1 - Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics N2 - A direct electron transfer (DET) based sulphite/oxygen biofuel cell is reported that utilises human sulphite oxidase (hSOx) and Myrothecium verrucaria bilirubin oxidase (MvBOx) and nanostructured gold electrodes. For bioanode construction, the nanostructured gold microelectrodes were further modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) to which polyethylene imine was covalently attached. hSOx was adsorbed onto this chemically modified nanostructured electrode with high surface loading of electroactive enzyme and in presence of sulphite high anodic bioelectrocatalytic currents were generated with an onset potential of 0.05 V vs. NHE. The biocathode contained MyBOx directly adsorbed to the deposited gold nanoparticles for cathodic oxygen reduction starting at 0.71 V vs. NHE. Both enzyme electrodes were integrated to a DET-type biofuel cell. Power densities of 8 and 1 mu W cm(-2) were achieved at 0.15 V and 0.45 V of cell voltages, respectively, with the membrane based biodevices under aerobic conditions. (C) 2014 Elsevier B.V. All rights reserved. KW - Enzymatic fuel cell KW - Microscale electrode KW - Direct electron transfer KW - Sulphite oxidase KW - Bilirubin oxidase Y1 - 2015 U6 - https://doi.org/10.1016/j.bios.2014.10.080 SN - 0956-5663 SN - 1873-4235 VL - 66 SP - 39 EP - 42 PB - Elsevier CY - Oxford ER -