TY - JOUR A1 - Schulze, Nicole A1 - Tiersch, B. A1 - Zenke, I. A1 - Koetz, Joachim T1 - Polyampholyte-tuned lyotrop lamellar liquid crystalline systems JF - COLLOID AND POLYMER SCIENCE N2 - The influence of a polyampholyte, i.e., poly(N,N’-diallyl-N,N’-dimethyl-altmaleamic carboxylate) (PalH), on the lamellar liquid crystalline (LC) system sodium dodecyl sulfate (SDS)/decanol/water was investigated by means of microdifferential scanning calorimetry, small-angle X-ray diffraction (SAXS), and cryo-scanning electron microscopy. After incorporating PalH into the lamellar liquid crystalline system, SAXS measurements show that three different LC phases exist: i.e., a swelling, slightly swelling, and non-swelling one. At pH 4, the positively charged polymer with an extended conformation can directly adsorb at the anionic head groups of the surfactant and more compact vesicles are formed at room temperature. At pH 9, the electrostatic interactions between the polyampholyte (in a more coiled conformation) and the sulfate head groups of the SDS are leveled off and incompact vesicles are formed at room temperature. That means in presence of the polyampholyte the morphology of the LC phase, i.e., the supramolecular vesicle structure, can be tuned by varying the pH and/or the temperature. KW - Polyampholytes KW - Lamellar liquid crystals KW - Vesicle formation KW - SAXS KW - Cryo-SEM KW - mu-DSC Y1 - 2013 U6 - https://doi.org/10.1007/s00396-013-2999-5 SN - 0303-402X SN - 1435-1536 VL - 291 IS - 11 SP - 2551 EP - 2559 PB - SPRINGER CY - NEW YORK ER - TY - JOUR A1 - Schulze, Nicole A1 - Prietzel, Claudia Christina A1 - Koetz, Joachim T1 - Polyampholyte-mediated synthesis of anisotropic gold nanoplatelets JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - This paper focused on the synthesis of triangular nanoplatelets in the presence of a tubular network structure. The tubular network structure is formed by adding a strongly alternating polyampholyte, i.e., PalPhBisCarb, to a mixed vesicle system with a negatively charged bilayer containing phosphatidylcholin and AOT. Using the tubular network as a reducing agent in a one-step procedure, triangular and hexagonal nanoplatelets are formed. One can show that the nanoplatelet yield is enhanced by increasing the temperature and decreasing the reaction time. The platelet edge length can be decreased by heating the system up to 100 A degrees C. Due to specific interactions between PalPhBisCarb and the AOT/phospholipid bilayer, stacking and welding effects lead to the formation of ordered platelet structures. The reaction pathway to flat gold nanotriangles is discussed with regard to the twin plane growth model of gold nanoplates. KW - Polyampholytes KW - Tubular network structure KW - Anisotropic gold nanoplatelets KW - Nanocrystal growth KW - Nanotriangle stacking and welding Y1 - 2016 U6 - https://doi.org/10.1007/s00396-016-3890-y SN - 0303-402X SN - 1435-1536 VL - 294 SP - 1297 EP - 1304 PB - Springer CY - New York ER - TY - JOUR A1 - Schulze, Nicole A1 - Appelhans, D. A1 - Tiersch, Brigitte A1 - Koetz, Joachim T1 - Morphological transformation of vesicles into tubular structures by adding polyampholytes or dendritic glycopolymers JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - For the first time tubulating properties of spherical dendritic glycopolymers and linear alternating polyampholytes against non-uniform negatively charged giant vesicles are proven by light microscopy and cryo-scanning electron microscopy study. Real time observation of the morphological transformation from giant vesicles to tubular structures, simulating morphogenesis in living cells, is given by using the cationic and H-bond active dendritic glycopolymer accompanied by reducing the size of the giant vesicles and the evidence of vesicle-vesicle interaction which was only postulated in a previous study. Similar morphogenesis of non-uniform giant vesicles into tubular network structure can be observed by using a polyampholyte in the stretched conformation at pH 9. Pearl necklace and tubular network structure formation are also observed by applying anionic vesicles of significant smaller dimensions with average size dimensions of 35 nm, after adding the polyampholyte at pH 9. However, the fitting accuracy between the functional groups along the backbone chain of the polyampholyte on one side and the vesicle surface on the other side is of high importance for the transformation process by using polyampholytes. The resulting tubular and network structures offer new fields of application as microfluidic transport channels or template phases for the shape controlled formation of nanoparticles. (C) 2014 Elsevier B.V. All rights reserved. KW - Alternating polyampholytes KW - Maltose-modified PEI KW - Network structure KW - Template phase KW - Cryo-SEM KW - DLS Y1 - 2014 U6 - https://doi.org/10.1016/j.colsurfa.2014.06.007 SN - 0927-7757 SN - 1873-4359 VL - 457 SP - 326 EP - 332 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schulze, Nicole A1 - Koetz, Joachim T1 - Kinetically controlled growth of gold nanotriangles in a vesicular template phase by adding a strongly alternating polyampholyte JF - Journal of dispersion science and technology N2 - This paper is focused on the temperature-dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholine and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb. UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in the presence of the polyampholyte at 45°C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45°C. Corresponding zeta potential measurements indicate that a temperature-dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets. KW - Kinetically controlled nanocrystal growth KW - nanotriangles KW - polyampholytes Y1 - 2016 U6 - https://doi.org/10.1080/01932691.2016.1220318 SN - 0193-2691 SN - 1532-2351 VL - 38 IS - 8 SP - 1073 EP - 1078 PB - Taylor & Francis CY - Philadelphia ER -