TY - JOUR A1 - Flores Suárez, Rosaura A1 - Ganesan, Lakshmi Meena A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Mellinger, Axel T1 - Imaging liquid crystals dispersed in a ferroelectric polymer matrix by means of thermal-pulse tomography N2 - A new arrangement of the optical elements in a Thermal-Pulse-Tomography (TPT) setup allows to scan micrometer structures in composite and heterogeneous samples such as polymer-dispersed liquid crystals (PDLCs). The non-destructive TPT technique allows the determination of three-dimensional profiles of polarization and space charge in dielectrics. The samples under study were 12 mu m thick films of a copolymer of vinylidene fluoride with trifluoroethylene P(VDF- TrFE) (65/35) with embedded liquid-crystal droplets. The poling process was performed in direct contact well above the coercive field of the copolymer. The 3D map obtained from scanning with a 10 mu m wide spot shows elliptically shaped areas with liquid-crystal droplets. Considering the droplets as oblate spheroids, their major axis lies in the x-y plane, while their minor axis in the z direction measures 0.5 mu m or more. This result is in good agreement with scanning electron micrographs. It is believed that the major axis is overestimated due to imaging of liquid-crystal clusters. Y1 - 2010 UR - http://ieeexplore.ieee.org/servlet/opac?punumber=94 U6 - https://doi.org/10.1109/TDEI.2010.5539683 SN - 1070-9878 ER - TY - JOUR A1 - Singh, Rajeev A1 - Mellinger, Axel T1 - Measurement of through-thickness thermal diffusivity of thermoplastics using thermal wave method JF - Indian journal of physics N2 - Thermo-physical properties, such as thermal conductivity, thermal diffusivity and specific heat are important quantities that are needed to interpret and characterize thermoplastic materials. Such characterization is necessary for many applications, ranging from aerospace engineering to food packaging, electrical and electronic industry and medical science. In this work, the thermal diffusivity of commercially available polymeric films is measured in the thickness direction at room temperature using thermal wave method. The results obtained with this method are in good agreement with theoretical and experimental values. KW - Thermoplastics KW - Thermal diffusivity KW - Thermal wave method KW - Polymer Y1 - 2015 U6 - https://doi.org/10.1007/s12648-014-0579-2 SN - 0973-1458 SN - 0974-9845 VL - 89 IS - 4 SP - 361 EP - 368 PB - Indian Association for the Cultivation of Science CY - Kolkata ER - TY - JOUR A1 - Gonzalez, Francisco Camacho A1 - Mellinger, Axel A1 - Gerhard, Reimund A1 - Santos, Lucas F. A1 - Faria, Roberto M. T1 - Photo-stimulated discharge of highly insulating polymers (PTFE and PETP) Y1 - 2002 SN - 0-7803-7502-5 ER - TY - JOUR A1 - Mellinger, Axel A1 - Camacho González, Francisco A1 - Gerhard, Reimund T1 - Photostimulated discharge in electret polymers : an alternative approach for investigating deep traps N2 - The stability of space charge in electrets such as polytetrafluoroethylene (PTFE), polyethylene terephthalate (PETP) and polypropylene (PP) under ultraviolet irradiation has been investigated using photostimulated discharge spectroscopy. While only weak discharge currents were observed in PTFE coated with semitransparent gold electrodes, up to 15 pA/cm(2) were found in PETP around the UV absorption edge near 310 nm. Space charge profiles obtained with the piezoelectrically generated pressure step method indicate that near-surface charges were almost completely removed. In PP foam, recent findings of a UV-reduced d(33) coefficient were confirmed for exposure times of up to 3.5 h, and a discharge peak at 200 urn could be assigned to the charges stored on the surfaces of the voids. The unique morphology and the (quasi-) piezoelectric properties of cellular PP make it a role model for the future investigation of charge storage in electrets Y1 - 2004 ER - TY - JOUR A1 - Mellinger, Axel A1 - Gonzalez, Francisco Camacho A1 - Gerhard, Reimund A1 - Santos, Lucas F. A1 - Faria, Roberto M. T1 - Phototstimulated discharge of corona and electron-beam charged electret polymers Y1 - 2002 SN - 0-7803-7560-2 ER - TY - JOUR A1 - Qiu, Xunlin A1 - Mellinger, Axel A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Spectroscopic study of dielectric barrier discharges in cellular polypropylene ferroelectrets N2 - The transient light emission from the dielectric barrier discharges (DBDs) in cellular polypropylene ferroelectrets subjected to high electric poling fields was spectroscopically measured. The spectrum shows strong emission from the second positive system of molecular nitrogen, N-2(C (3)Pi(u))-> N-2(B (3)Pi(g)), and the first negative system of N-2(+), N-2(+)(B (2)Sigma(+)(u))-> N-2(+)(X (2)Sigma(+)(g)), consistent with a DBD in air. When a dc voltage is applied stepwise to the ferroelectret film, light emission starts above a threshold, coinciding with the threshold voltage in obtaining piezoelectricity. From selected vibronic band strength ratios, the electric field in the discharge was determined and found to agree with Townsend breakdown. Y1 - 2007 UR - http://apl.aip.org/ U6 - https://doi.org/10.1063/1.2786597 ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Mallepally, Rajendar Reddy A1 - Gerhard, Reimund T1 - Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites N2 - Ferroelectrets are thin films of polymer foams, exhibiting piezoelectric properties after electrical charging. Ferroelectret foams usually consist of a cellular polymer structure filled with air. Polymer-air composites are elastically soft due to their high air content as well as due to the size and shape of the polymer walls. Their elastically soft composite structure is one essential key for the working principle of ferroelectrets, besides the permanent trapping of electric charges inside the polymer voids. The elastic properties allow large deformations of the electrically charged voids. However, the composite structure can also possibly limit the stability and consequently the range of applications because of, e. g., penetration of gas and liquids accompanied by discharge phenomena or because of a mechanical pre-load which may be required during the application. Here, we discuss various stability aspects related to the piezoelectric properties of polypropylene ferroelectrets. Near and below room temperature, the piezoelectric effect and the stability of the trapped charges are practically independent from humidity during long-time storage in a humid atmosphere or water, or from operating conditions, such as continuous mechanical excitation. Thermal treatment of cellular polypropylene above -10 degrees C leads to a softening of the voided structure which is apparent from the decreasing values of the elastic modulus. This decrease results in an increase of the piezoelectric activity. Heating above 60 degrees C, however, leads to a decrease in piezoelectricity Y1 - 2006 ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Mallepally, Rajendar Reddy A1 - Gerhard, Reimund T1 - Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites Y1 - 2006 ER - TY - JOUR A1 - Flores Suárez, Rosaura A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Singh, Rajeev T1 - Thermal-pulse tomography of polarization distributions in a cylindrical geometry JF - IEEE transactions on dielectrics and electrical insulation N2 - Fast, three-dimensional polarization mapping in piezoelectric sensor cables was performed by means of the novel thermal-pulse tomography (TPT) technique with a lateral resolution of 200 mum. The active piezoelectric cable material (a copolymer of polyvinylidene fluoride with trifluoroethylene) was electrically poled with a point-to-cable corona discharge. A focused laser was employed to heat the opaque outer electrode, and the short-circuit current generated by the thermal pulse was used to obtain 3D polarization maps via the scale transformation method. The article describes the TPT technique as a fast non-destructive option for studying cylindrical geometries. Y1 - 2006 U6 - https://doi.org/10.1109/TDEI.2006.258210 SN - 1070-9878 VL - 13 IS - 5 SP - 1030 EP - 1035 PB - IEEE CY - Piscataway ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Thermally stable dynamic piezoelectricity in sandwich films of porous and non-porous amorphous fluoropolymer Y1 - 2001 ER -