TY - JOUR A1 - Wandt, Viktoria Klara Veronika A1 - Winkelbeiner, Nicola Lisa A1 - Bornhorst, Julia A1 - Witt, Barbara A1 - Raschke, Stefanie A1 - Simon, Luise A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A matter of concern BT - trace element dyshomeostasis and genomic stability in neurons JF - Redox Biology N2 - Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability Y1 - 2021 U6 - https://doi.org/10.1016/j.redox.2021.101877 VL - 41 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Winkelbeiner, Nicola Lisa A1 - Wandt, Viktoria Klara Veronika A1 - Ebert, Franziska A1 - Lossow, Kristina A1 - Bankoglu, Ezgi E. A1 - Martin, Maximilian A1 - Mangerich, Aswin A1 - Stopper, Helga A1 - Bornhorst, Julia A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice BT - Impact of Sex and Age T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2’-deoxyguanosine (8-oxodG), 5-hydroxy-2’-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1021 KW - maintenance of genomic integrity KW - ageing KW - sex KW - DNA damage KW - base excision repair (incision activity) KW - DNA damage response KW - poly(ADP-ribosyl)ation KW - liver Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484831 SN - 1866-8372 IS - 1021 ER - TY - JOUR A1 - Winkelbeiner, Nicola Lisa A1 - Wandt, Viktoria Klara Veronika A1 - Ebert, Franziska A1 - Lossow, Kristina A1 - Bankoglu, Ezgi E. A1 - Martin, Maximilian A1 - Mangerich, Aswin A1 - Stopper, Helga A1 - Bornhorst, Julia A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice BT - Impact of Sex and Age JF - International Journal of Molecular Sciences N2 - Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2’-deoxyguanosine (8-oxodG), 5-hydroxy-2’-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery. KW - maintenance of genomic integrity KW - ageing KW - sex KW - DNA damage KW - base excision repair (incision activity) KW - DNA damage response KW - poly(ADP-ribosyl)ation KW - liver Y1 - 2020 U6 - https://doi.org/10.3390/ijms21186600 SN - 1422-0067 VL - 21 IS - 18 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Müller, S. M. A1 - Finke, Hannah A1 - Ebert, Franziska A1 - Kopp, Johannes Florian A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Francesconi, Kevin A. A1 - Raber, G. A1 - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons BT - effects on gene expression, epigenetics, and biotransformation in HepG2 cells JF - Archives of toxicology : official journal of EUROTOX N2 - Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids found in fish and algae, elicit substantial toxic effects in various human cell lines and have a considerable impact on cellular energy levels. The underlying mode of action, however, is still unknown. The present study analyzes the effects of two AsHCs (AsHC 332 and AsHC 360) on the expression of 44 genes covering DNA repair, stress response, cell death, autophagy, and epigenetics via RT-qPCR in human liver (HepG2) cells. Both AsHCs affected the gene expression, but to different extents. After treatment with AsHC 360, flap structure-specific endonuclease 1 (FEN1) as well as xeroderma pigmentosum group A complementing protein (XPA) and (cytosine-5)-methyltransferase 3A (DNMT3A) showed time- and concentration-dependent alterations in gene expression, thereby indicating an impact on genomic stability. In the subsequent analysis of epigenetic markers, within 72 h, neither AsHC 332 nor AsHC 360 showed an impact on the global DNA methylation level, whereas incubation with AsHC 360 increased the global DNA hydroxymethylation level. Analysis of cell extracts and cell media by HPLC-mass spectrometry revealed that both AsHCs were considerably biotransformed. The identified metabolites include not only the respective thioxo-analogs of the two AsHCs, but also several arsenic-containing fatty acids and fatty alcohols, contributing to our knowledge of biotransformation mechanisms of arsenolipids. KW - Arsenolipids KW - Gene expression KW - Arsenic-containing hydrocarbons KW - Global DNA methylation KW - Arsenic speciation KW - Metabolism Y1 - 2018 U6 - https://doi.org/10.1007/s00204-018-2194-z SN - 0340-5761 SN - 1432-0738 VL - 92 IS - 5 SP - 1751 EP - 1765 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Meyer, Sören A1 - Raber, Georg A1 - Ebert, Franziska A1 - Taleshi, Mojtaba S. A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons and arsenic-containing fatty acids: Transfer across and presystemic metabolism in the Caco-2 intestinal barrier model JF - Molecular nutrition & food research : bioactivity, chemistry, immunology, microbiology, safety, technology N2 - Scope: Arsenic-containing hydrocarbons (AsHCs) and arsenic-containing fatty acids (AsFAs) represent two classes of arsenolipids occurring naturally in marine food. Toxicological data are yet scarce and an assessment regarding the risk to human health has not been possible. Here, we investigated the transfer and presystemic metabolism of five arsenolipids in an intestinal barrier model. Methods and results: Three AsHCs and two AsFAs were applied to the Caco-2 intestinal barrier model. Thereby, the short-chain AsHCs reached up to 50% permeability. Transport is likely to occur via passive diffusion. The AsFAs showed lower intestinal bioavailability, but respective permeabilities were still two to five times higher as compared to arsenobetaine or arsenosugars. Interestingly, AsFAs were effectively biotransformed while passing the in vitro intestinal barrier, whereas AsHCs were transported to the blood-facing compartment essentially unchanged. Conclusion: AsFAs can be presystemically metabolised and the amount of transferred arsenic is lower than that for AsHCs. In contrast, AsHCs are likely to be highly intestinally bioavailable to humans. Since AsHCs exert strong toxicity in vitro and in vivo, toxicity studies with experimental animals as well as a human exposure assessment are needed to assess the risk to human health related to the presence of AsHCs in seafood. KW - Arsenolipids KW - Caco-2 intestinal barrier model KW - Presystemic metabolism KW - Toxicity Y1 - 2015 U6 - https://doi.org/10.1002/mnfr.201500286 SN - 1613-4125 SN - 1613-4133 VL - 59 IS - 10 SP - 2044 EP - 2056 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Meyer, Sören A1 - Schulz, J. A1 - Jeibmann, A. A1 - Taleshi, M. S. A1 - Ebert, Franziska A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster JF - Metallomics : integrated biometal science N2 - Arsenic-containing hydrocarbons (AsHC) constitute one group of arsenolipids that have been identified in seafood. In this first in vivo toxicity study for AsHCs, we show that AsHCs exert toxic effects in Drosophila melanogaster in a concentration range similar to that of arsenite. In contrast to arsenite, however, AsHCs cause developmental toxicity in the late developmental stages of Drosophila melanogaster. This work illustrates the need for a full characterisation of the toxicity of AsHCs in experimental animals to finally assess the risk to human health related to the presence of arsenolipids in seafood. Y1 - 2014 U6 - https://doi.org/10.1039/c4mt00249k SN - 1756-5901 SN - 1756-591X VL - 6 IS - 11 SP - 2010 EP - 2014 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Meyer, Sören A1 - Schulz, Jacqueline A1 - Jeibmann, Astrid A1 - Taleshi, Mojtaba S. A1 - Ebert, Franziska A1 - Francesconi, Kevin A1 - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster N2 - Arsenic-containing hydrocarbons (AsHC) constitute one group of arsenolipids that have been identified in seafood. In this first in vivo toxicity study for AsHCs, we show that AsHCs exert toxic effects in Drosophila melanogaster in a concentration range similar to that of arsenite. In contrast to arsenite, however, AsHCs cause developmental toxicity in the late developmental stages of Drosophila melanogaster. This work illustrates the need for a full characterisation of the toxicity of AsHCs in experimental animals to finally assess the risk to human health related to the presence of arsenolipids in seafood. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 183 KW - cod-liver KW - arsenolipids present KW - fatty-acids KW - rp-hplc KW - identification KW - fish KW - oil Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76819 VL - 11 IS - 6 SP - 2010 EP - 2014 ER - TY - JOUR A1 - Meyer, Sören A1 - Schulz, Jacqueline A1 - Jeibmann, Astrid A1 - Taleshi, Mojtaba S. A1 - Ebert, Franziska A1 - Francesconi, Kevin A1 - Schwerdtle, Tanja ED - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster JF - Metallomics N2 - Arsenic-containing hydrocarbons (AsHC) constitute one group of arsenolipids that have been identified in seafood. In this first in vivo toxicity study for AsHCs, we show that AsHCs exert toxic effects in Drosophila melanogaster in a concentration range similar to that of arsenite. In contrast to arsenite, however, AsHCs cause developmental toxicity in the late developmental stages of Drosophila melanogaster. This work illustrates the need for a full characterisation of the toxicity of AsHCs in experimental animals to finally assess the risk to human health related to the presence of arsenolipids in seafood. KW - arsenolipids present KW - cod-liver KW - fatty-acids KW - identification KW - rp-hplc KW - fish KW - oil Y1 - 2014 SN - 1756-5901 SP - 2010 EP - 2014 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Müller, Sandra Marie A1 - Ebert, Franziska A1 - Bornhorst, Julia A1 - Galla, Hans-Joachim A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons disrupt a model in vitro blood-cerebrospinal fluid barrier JF - Journal of trace elements in medicine and biology N2 - Lipid-soluble arsenicals, so-called arsenolipids, have gained a lot of attention in the last few years because of their presence in many seafoods and reports showing substantial cytotoxicity emanating from arsenic-containing hydrocarbons (AsHCs), a prominent subgroup of the arsenolipids. More recent in vivo and in vitro studies indicate that some arsenolipids might have adverse effects on brain health. In the present study, we focused on the effects of selected arsenolipids and three representative metabolites on the blood-cerebrospinal fluid barrier (B-CSF-B), a brain-regulating interface. For this purpose, we incubated an in vitro model of the B-CSF-B composed of porcine choroid plexus epithelial cells (PCPECs) with three AsHCs, two arsenic-containing fatty acids (AsFAs) and three representative arsenolipid metabolites (dimethylarsinic acid, thio/oxo-dimethylpropanoic acid) to examine their cytotoxic potential and impact on barrier integrity. The toxic arsenic species arsenite was also tested in this way and served as a reference substance. While AsFAs and the metabolites showed no cytotoxic effects in the conducted assays, AsHCs showed a strong cytotoxicity, being up to 1.5-fold more cytotoxic than arsenite. Analysis of the in vitro B-CSF-B integrity showed a concentration dependent disruption of the barrier within 72 h. The correlation with the decreased plasma membrane surface area (measured as capacitance) indicates cytotoxic effects. These findings suggest exposure to elevated levels of certain arsenolipids may have detrimental consequences for the central nervous system. KW - Arsenolipids KW - Blood-liquor barrier KW - Blood-cerebrospinal fluid barrier KW - Arsenic-containing hydrocarbons KW - Arsenic-containing fatty acids Y1 - 2018 U6 - https://doi.org/10.1016/j.jtemb.2018.01.020 SN - 0946-672X VL - 49 SP - 171 EP - 177 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Witt, B. A1 - Bornhorst, Julia A1 - Mitze, H. A1 - Ebert, Franziska A1 - Meyer, S. A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures JF - Metallomics : integrated biometal science N2 - Arsenic-containing hydrocarbons (AsHCs), natural products found in seafood, have recently been shown to exert toxic effects in human neurons. In this study we assessed the toxicity of three AsHCs in cultured human astrocytes. Due to the high cellular accessibility and substantial toxicity observed astrocytes were identified as further potential brain target cells for arsenolipids. Thereby, the AsHCs exerted a 5-19-fold higher cytotoxicity in astrocytes as compared to arsenite. Next we compared the toxicity of the arsenicals in a co-culture model of the respective human astrocytes and neurons. Notably the AsHCs did not show any substantial toxic effects in the co-culture, while arsenite did. The arsenic accessibility studies indicated that in the co-culture astrocytes protect neurons against cellular arsenic accumulation especially after incubation with arsenolipids. In summary, these data underline the importance of the glial-neuron interaction when assessing the in vitro neurotoxicity of new unclassified metal species. Y1 - 2017 U6 - https://doi.org/10.1039/c7mt00036g SN - 1756-5901 SN - 1756-591X VL - 9 SP - 442 EP - 446 PB - Royal Society of Chemistry CY - Cambridge ER -