TY - JOUR A1 - Kaboth-Bahr, Stefanie A1 - Bahr, André A1 - Zeeden, Christian A1 - Yamoah, Kweku A. A1 - Lone, Mahjoor Ahmad A1 - Chuang, Chih-Kai A1 - Löwemark, Ludvig A1 - Wei, Kuo-Yen T1 - A tale of shifting relations BT - East Asian summer and winter monsoon variability during the Holocene JF - Scientific Reports N2 - Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Niño-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality. KW - Environmental sciences KW - Ocean sciences KW - Solid Earth sciences Y1 - 2020 U6 - https://doi.org/10.1038/s41598-021-85444-7 SN - 2045-2322 VL - 11 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - THES A1 - Kaboth-Bahr, Stefanie T1 - Deciphering paleoclimate sensitivity across time and space T1 - Entschlüsselung der Sensitivität vergangener Klimaperioden durch Zeit und Raum BT - trends, feedbacks, and teleconnections BT - Trends, Rückkopplungen und Wechselwirkungen N2 - This habilitation thesis includes seven case studies that examine climate variability during the past 3.5 million years from different temporal and spatial perspectives. The main geographical focus is on the climatic events of the of the African and Asian monsoonal system, the North Atlantic as well as the Arctic Ocean. The results of this study are based on marine and terrestrial climate archives obtained by sedimentological and geochemical methods, and subsequently analyzed by various statistical methods. The results herein presented results provide a picture of the climatic background conditions of past cold and warm periods, the sensitivity of past climatic climate phases in relation to changes in the atmospheric carbon dioxide content, and the tight linkage between the low and high latitude climate system. Based on the results, it is concluded that a warm background climate state strongly influenced and/or partially reversed the linear relationships between individual climate processes that are valid today. Also, the driving force of the low latitudes for climate variability of the high latitudes is emphasized in the present work, which is contrary to the conventional view that the global climate change of the past 3.5 million years was predominantly controlled by the high latitude climate variability. Furthermore, it is found that on long geologic time scales (>1000 years to millions of years), solar irradiance variability due to changes in the Earth-Sun-Moon System may have increased the sensitivity of low and high latitudes to Influenced changes in atmospheric carbon dioxide. Taken together, these findings provide new insights into the sensitivity of past climate phases and provide new background conditions for numerical models, that predict future climate change. N2 - Die vorliegende Habilitationsschrift umfasst sieben Fallstudien, die die Klimavariabilität während der letzten 3,5 Millionen Jahre aus verschiedenen zeitlichen und räumlichen Perspektiven behandeln. Dabei liegt das geographische Hauptaugenmerk auf dem Klimageschehen des Afrikanischen und Asiatischen Monsuns sowie der Nordatlantischen und Arktischen Ozeane. Die Ergebnisse dieser Studie basieren auf marinen und terrestrischen Klimaarchiven, die durch sedimentologische und geochemische Methoden gewonnen wurden sowie anschließend durch verschiedene statistische Methoden analysiert sind. Die in der vorliegenden Arbeit präsentierten Ergebnisse zeichnen ein Bild über die klimatischen Hintergrundbedingungen vergangener Kalt- und Warmzeiten, die Sensitivität vergangener Klimaphasen im Zusammenhang zu Veränderungen im atmosphärischen Kohlenstoffdioxidgehaltes sowie der engen Verknüpfung des Klimageschehens zwischen niederen und hohen Breiten. Anhand der Ergebnisse wird festgestellt, dass ein warmes Hintergrundklima die linearen, heute gültigen Beziehungen zwischen einzelnen Klimaprozessen stark beeinflusst hat beziehungsweise diese teilweise umkehrt. Ebenfalls wird in der vorliegenden Arbeit die Antriebskraft der niederen Breiten für Klimavariabilität der hohen Breiten herausgestellt, was im Gegensatz steht zu der konventionellen Ansicht, dass der globale Klimawandel der letzten 3,5 Millionen Jahre überwiegend durch die hohen Breiten gesteuert wurde. Darüber hinaus wird festgestellt, dass auf langen geologischen Zeitskalen (>1000 Jahre bis hin zu Millionen Jahre) die Variabilität der Sonneneinstrahlung durch Veränderungen im Erd-Sonne-Mond System möglicherweise die Empfindlichkeit niedriger und hoher Breiten gegenüber Veränderungen im atmosphärischen Kohlenstoffdioxid beeinflusst haben. Insgesamt ermöglichen diese Erkenntnisse neue Einblicke über die Sensitivität vergangener Klimaphasen und liefern neue Hintergrundbedingungen für numerische Modelle, die zukünftige Klimaveränderungen vorhersagen. KW - Paleoclimatic dynamics KW - multivariate statistics KW - Plio-Pleistocene timeframe KW - Monsoonal variability KW - North Atlantic climate change KW - Arctic climate change KW - Paläoklimadynamik KW - multivariate Statistik KW - Plio-Pleistozän Zeitfenster KW - monsunale Variabilität KW - nordatlantische Klimaänderung KW - arktische Klimaänderung Y1 - 2021 ER - TY - JOUR A1 - Vogt-Vincent, Noam A1 - Lippold, Jörg A1 - Kaboth-Bahr, Stefanie A1 - Blaser, Patrick T1 - Ice-rafted debris as a source of non-conservative behaviour for the epsilon Nd palaeotracer BT - insights from a simple model JF - Geo-marine letters : an international journal of marine geology N2 - Neodymium isotopic composition (epsilon Nd) has enjoyed widespread use as a palaeotracer, principally because it behaves quasi-conservatively in the modern ocean. However, recent bottom water epsilon Nd reconstructions from the eastern North Atlantic are difficult to interpret under assumptions of conservative behaviour. The observation that this apparent departure from conservative behaviour increases with enhanced ice-rafted debris (IRD) fluxes has resulted in the suggestion that IRD leads to the overprinting of bottom water epsilon Nd through reversible scavenging. In this study, a simple water column model successfully reproduces epsilon Nd reconstructions from the eastern North Atlantic at the Last Glacial Maximum and Heinrich Stadial 1, and demonstrates that the changes in scavenging intensity required for good model-data fit is in good agreement with changes in the observed IRD flux. Although uncertainties in model parameters preclude a more definitive conclusion, the results indicate that the suggestion of IRD as a source of non-conservative behaviour in the epsilon Nd tracer is reasonable and that further research into the fundamental chemistry underlying the marine neodymium cycle is necessary to increase confidence in assumptions of conservative epsilon Nd behaviour in the past. KW - Neodymium isotopes KW - epsilon Nd KW - ice-rafted debris KW - IRD KW - last glacial KW - maximum KW - LGM KW - Heinrich event KW - Palaeoceanography KW - Paleoceanography KW - model KW - reversible scavenging KW - conservative KW - ocean circulation KW - atlantic KW - meridional overturning circulation KW - geochemical cycling Y1 - 2020 U6 - https://doi.org/10.1007/s00367-020-00643-x SN - 0276-0460 SN - 1432-1157 VL - 40 IS - 3 SP - 325 EP - 340 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kaboth-Bahr, Stefanie A1 - Bahr, André A1 - Stepanek, Christian A1 - Catunda, Maria Carolina Amorim A1 - Karas, Cyrus A1 - Ziegler, Martin A1 - García-Gallardo, Ángela A1 - Grunert, Patrick T1 - Mediterranean heat injection to the North Atlantic delayed the intensification of Northern Hemisphere glaciations JF - Communications Earth & Environment N2 - The intensification of Northern Hemisphere glaciations at the end of the Pliocene epoch marks one of the most substantial climatic shifts of the Cenozoic. Despite global cooling, sea surface temperatures in the high latitude North Atlantic Ocean rose between 2.9–2.7 million years ago. Here we present sedimentary geochemical proxy data from the Gulf of Cadiz to reconstruct the variability of Mediterranean Outflow Water, an important heat source to the North Atlantic. We find evidence for enhanced production of Mediterranean Outflow from the mid-Pliocene to the late Pliocene which we infer could have driven a sub-surface heat channel into the high-latitude North Atlantic. We then use Earth System Models to constrain the impact of enhanced Mediterranean Outflow production on the northward heat transport in the North Atlantic. In accord with the proxy data, the numerical model results support the formation of a sub-surface channel that pumped heat from the subtropics into the high latitude North Atlantic. We further suggest that this mechanism could have delayed ice sheet growth at the end of the Pliocene. Y1 - 2021 U6 - https://doi.org/10.1038/s43247-021-00232-5 SN - 2662-4435 SP - 1 EP - 9 PB - Springer Nature CY - London ER - TY - JOUR A1 - Bahr, André A1 - Kolber, Gilles A1 - Kaboth-Bahr, Stefanie A1 - Reinhardt, Lutz A1 - Friedrich, Oliver A1 - Pross, Jörg T1 - Mega-monsoon variability during the late Triassic BT - re-assessing the role of orbital forcing in the deposition of playa sediments in the Germanic Basin JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - The formation of the supercontinent Pangaea during the Permo-Triassic gave rise to an extreme monsoonal climate (often termed 'mega-monsoon') that has been documented by numerous palaeo-records. However, considerable debate exists about the role of orbital forcing in causing humid intervals in an otherwise arid climate. To shed new light on the forcing of monsoonal variability in subtropical Pangaea, this study focuses on sediment facies and colour variability of playa and alluvial fan deposits in an outcrop from the late Carnian (ca 225 Ma) in the southern Germanic Basin, south-western Germany. The sediments were deposited against a background of increasingly arid conditions following the humid Carnian Pluvial Event (ca 234 to 232 Ma). The ca 2 center dot 4 Myr long sedimentary succession studied shows a tripartite long-term evolution, starting with a distal mud-flat facies deposited under arid conditions. This phase was followed by a highly variable playa-lake environment that documents more humid conditions and finally a regression of the playa-lake due to a return of arid conditions. The red-green (a*) and lightness (L*) records show that this long-term variability was overprinted by alternating wet/dry cycles driven by orbital precession and ca 405 kyr eccentricity, without significant influence of obliquity. The absence of obliquity in this record indicates that high-latitude forcing played only a minor role in the southern Germanic Basin during the late Carnian. This is different from the subsequent Norian when high-latitude signals became more pronounced, potentially related to the northward drift of the Germanic Basin. The recurring pattern of pluvial events during the late Triassic demonstrates that orbital forcing, in particular eccentricity, stimulated the occurrence and intensity of wet phases. It also highlights the possibility that the Carnian Pluvial Event, although most likely triggered by enhanced volcanic activity, may also have been modified by an orbital stimulus. KW - Carnian Pluvial Event KW - Germanic Basin KW - Late Triassic KW - mega-monsoon KW - orbital forcing KW - playa-lake Y1 - 2019 U6 - https://doi.org/10.1111/sed.12668 SN - 0037-0746 SN - 1365-3091 VL - 67 IS - 2 SP - 951 EP - 970 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Foerster, Verena A1 - Asrat, Asfawossen A1 - Ramsey, Christopher Bronk A1 - Brown, Erik T. A1 - Chapot, Melissa S. A1 - Deino, Alan A1 - Düsing, Walter A1 - Grove, Matthew A1 - Hahn, Annette A1 - Junginger, Annett A1 - Kaboth-Bahr, Stefanie A1 - Lane, Christine S. A1 - Opitz, Stephan A1 - Noren, Anders A1 - Roberts, Helen M. A1 - Stockhecke, Mona A1 - Tiedemann, Ralph A1 - Vidal, Celine M. A1 - Vogelsang, Ralf A1 - Cohen, Andrew S. A1 - Lamb, Henry F. A1 - Schaebitz, Frank A1 - Trauth, Martin H. T1 - Pleistocene climate variability in eastern Africa influenced hominin evolution JF - Nature geoscience N2 - Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from similar to 620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (similar to 275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (similar to 60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens. KW - Evolutionary ecology KW - Limnology KW - Palaeoclimate Y1 - 2022 U6 - https://doi.org/10.1038/s41561-022-01032-y SN - 1752-0894 SN - 1752-0908 VL - 15 IS - 10 SP - 805 EP - 811 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lu, Yin A1 - Dewald, Nico A1 - Koutsodendris, Andreas A1 - Kaboth-Bahr, Stefanie A1 - Rösler, Wolfgang A1 - Fang, Xiaomin A1 - Pross, Jörg A1 - Appel, Erwin A1 - Friedrich, Oliver T1 - Sedimentological evidence for pronounced glacial-interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene JF - Paleoceanography and Paleoclimatology N2 - The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (similar to 500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial-interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies. KW - Western Qaidam Basin KW - grain-size distribution KW - lake Donggi Cona KW - Chinese loess KW - Central-Asia KW - transport processes KW - Qilian mountains KW - dust sources KW - plateau KW - record Y1 - 2020 VL - 35 IS - 5 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Zeeden, Christian A1 - Obreht, Igor A1 - Veres, Daniel A1 - Kaboth-Bahr, Stefanie A1 - Hošek, Jan A1 - Marković, Slobodan B. A1 - Bösken, Janina A1 - Lehmkuhl, Frank A1 - Rolf, Christian A1 - Hambach, Ulrich T1 - Smoothed millennial-scale palaeoclimatic reference data as unconventional comparison targets: Application to European loess records JF - Scientific Reports N2 - Millennial-scale palaeoclimate variability has been documented in various terrestrial and marine palaeoclimate proxy records throughout the Northern Hemisphere for the last glacial cycle. Its clear expression and rapid shifts between different states of climate (Greenland Interstadials and Stadials) represents a correlation tool beyond the resolution of e.g. luminescence dating, especially relevant for terrestrial deposits. Usually, comparison of terrestrial proxy datasets and the Greenland ice cores indicates a complex expression of millennial-scale climate variability as recorded in terrestrial geoarchives including loess. Loess is the most widespread terrestrial geoarchive of the Quaternary and especially widespread over Eurasia. However, loess often records a smoothed representation of millennial-scale variability without all fidelity when compared to the Greenland data, this being a relevant limiting feature in integrating loess with other palaeoclimate records. To better understand the loess proxy-response to millennial-scale climate variability, we simulate a proxy signal smoothing by natural processes through application of low-pass filters of delta O-18 data from Greenland, a high-resolution palaeoclimate reference record, alongside speleothem isotope records from the Black Sea-Mediterranean region. We show that low-pass filters represent rather simple models for better constraining the expression of millennial-scale climate variability in low sedimentation environments, and in sediments where proxy-response signals are most likely affected by natural smoothing (by e.g. bioturbation). Interestingly, smoothed datasets from Greenland and the Black Sea-Mediterranean region are most similar in the last similar to 15 ka and between similar to 50-30 ka. Between similar to 30-15 ka, roughly corresponding to the Last Glacial Maximum and the deglaciation, the records show dissimilarities, challenging the construction of robust correlative time-scales in this age range. From our analysis it becomes apparent that patterns of palaeoclimate signals in loess-palaeosol sequences often might be better explained by smoothed Greenland reference data than the original high-resolution Greenland dataset, or other reference data. This opens the possibility to better assess the temporal resolution and palaeoclimate potential of loess-palaeosol sequences in recording supra-regional climate patterns, as well as to securely integrate loess with other chronologically better-resolved palaeoclimate records. KW - last glacial period KW - Western Interior Basin KW - high-resolution record KW - Greenland ice cores KW - paleosol sequence KW - time-scale KW - Chinese loess KW - astronomical calibration KW - chronology (AICC2012) KW - Antarctic ice Y1 - 2020 VL - 10 IS - 1 PB - Springer Nature CY - Berlin ER - TY - JOUR A1 - Gosling, William D. A1 - Scerri, Eleanor A1 - Kaboth-Bahr, Stefanie T1 - The climate and vegetation backdrop to hominin evolution in Africa JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - The most profound shift in the African hydroclimate of the last 1 million years occurred around 300 thousand years (ka) ago. This change in African hydroclimate is manifest as an east-west change in moisture balance that cannot be fully explained through linkages to high latitude climate systems. The east-west shift is, instead, probably driven by a shift in the tropical Walker Circulation related to sea surface temperature change driven by orbital forcing. Comparing records of past vegetation change, and hominin evolution and development, with this breakpoint in the climate system is challenging owing to the paucity of study sites available and uncertainties regarding the dating of records. Notwithstanding these uncertainties we find that, broadly speaking, both vegetation and hominins change around 300 ka. The vegetative backdrop suggests that relative abundance of vegetative resources shifted from western to eastern Africa, although resources would have persisted across the continent. The climatic and vegetation changes probably provided challenges for hominins and are broadly coincident with the appearance of Homo sapiens (ca 315 ka) and the emergence of Middle Stone Age technology. The concomitant changes in climate, vegetation and hominin evolution suggest that these factors are closely intertwined. This article is part of the theme issue 'Tropical forests in the deep human past'. KW - hominid KW - pollen KW - El Nino Southern Oscillation KW - habitat KW - human evolution KW - Homo sapiens Y1 - 2022 U6 - https://doi.org/10.1098/rstb.2020.0483 SN - 0962-8436 SN - 1471-2970 VL - 377 IS - 1849 PB - Royal Society CY - London ER - TY - JOUR A1 - Kaboth-Bahr, Stefanie A1 - Mudelsee, Manfred T1 - The multifaceted history of the Walker Circulation during the Plio-Pleistocene JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The Walker Circulation (WC) is an east-west trending band of atmospheric circulation cells along the equator and the predominant controller of heat and moisture transport in the tropics. Its variability is closely linked to the sea-surface temperature (SST) changes across the Pacific, the Indian and the Atlantic Oceans and can have pronounced effects on the humidity regimes of the adjacent continents. In recent years, the evolution of the WC during the Plioand Pleistocene epochs has been intensely studied in the context of the effectiveness of the tropics in modulating global climate change (e.g., the intensification of Northern Hemisphere glaciation). However, the onset of the modern WC pattern as well as its global impact during the Plioand Pleistocene is controversially assessed in the literature. For its onset, previous studies have suggested dates ranging between 2.4 and 0.8 million years ago (Myr), while its argued impact ranges from crucially influencing the increase of Northern Hemisphere ice sheet growth by channelling heat and moisture from the tropics into the high latitudes to having no effect on global ice volume changes. In order to achieve a comprehensive understanding of the spatiotemporal evolution of the WC during this time frame, we statistically analysed 30 globally distributed SST records covering the low and high latitudes between 3.5 and 1.5 Myr, encompassing the Late Pliocene to Early Pleistocene. We utilized a statistical change-point regression model to determine significant change points in the SST evolution of the (sub)-tropics and high latitudes that potentially relate to changes in the WC. We find that the WC experienced a multifaceted evolution between the Late Pliocene and the Early Pleistocene with significant transitional steps at-2.7 and-2.1 Ma. Our results suggest after the Late Pliocene, a pre-modern WC set in, which was characterized by a progressively strengthened Pacific Walker Cell alongside a weakened Indian Ocean Walker Cell. This change was potentially triggered by the constriction of the Indonesian seaway, an important transmitter between the Pacific and Indian Ocean. The ensuing mode of the WC intensified until-2.1 Myr, when SST values around the global scale signalled a progressive strengthening of the Indian Walker Cell in phase with the progressive strengthening of the Pacific and Atlantic Cells. Our findings indicate that a shift from a pre-modern to a modern-like WC potentially only occurred during the mid-Pleistocene. KW - Walker circulation KW - Plio-pleistocene transition KW - Early pleistocene; KW - Statistical analysis KW - Change-point regression model Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2022.107529 SN - 0277-3791 SN - 1873-457X VL - 286 PB - Elsevier CY - Oxford ER -