TY - JOUR A1 - Gvaramadze, V. V. A1 - Chene, A.-N. A1 - Kniazev, A. Y. A1 - Schnurr, O. A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Hainich, Rainer A1 - Langer, N. A1 - Hamann, Wolf-Rainer A1 - Chu, Y.-H. A1 - Gruendl, R. A. T1 - Discovery of a new Wolf-Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer JF - Monthly notices of the Royal Astronomical Society N2 - We report the first-ever discovery of a Wolf-Rayet (WR) star in the Large Magellanic Cloud via detection of a circular shell with the Spitzer Space Telescope. Follow-up observations with Gemini-South resolved the central star of the shell into two components separated from each other by a parts per thousand 2 arcsec (or a parts per thousand 0.5 pc in projection). One of these components turns out to be a WN3 star with H and He lines both in emission and absorption (we named it BAT99 3a using the numbering system based on extending the Breysacher et al. catalogue). Spectroscopy of the second component showed that it is a B0 V star. Subsequent spectroscopic observations of BAT99 3a with the du Pont 2.5-m telescope and the Southern African Large Telescope revealed that it is a close, eccentric binary system, and that the absorption lines are associated with an O companion star. We analysed the spectrum of the binary system using the non-LTE Potsdam WR (powr) code, confirming that the WR component is a very hot (a parts per thousand 90 kK) WN star. For this star, we derived a luminosity of log L/ L-aS (TM) = 5.45 and a mass-loss rate of 10(- 5.8) M-aS (TM) yr(- 1), and found that the stellar wind composition is dominated by helium with 20 per cent of hydrogen. Spectroscopy of the shell revealed an He iii region centred on BAT99 3a and having the same angular radius (a parts per thousand 15 arcsec) as the shell. We thereby add a new example to a rare class of high-excitation nebulae photoionized by WR stars. Analysis of the nebular spectrum showed that the shell is composed of unprocessed material, implying that the shell was swept-up from the local interstellar medium. We discuss the physical relationship between the newly identified massive stars and their possible membership of a previously unrecognized star cluster. KW - line: identification KW - binaries: spectroscopic KW - stars: massive KW - stars: Wolf-Rayet KW - ISM: bubbles Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu909 SN - 0035-8711 SN - 1365-2966 VL - 442 IS - 2 SP - 929 EP - 945 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gvaramadze, V. V. A1 - Kniazev, A. Y. A1 - Miroshnichenko, A. S. A1 - Berdnikov, Leonid N. A1 - Langer, N. A1 - Stringfellow, G. S. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Grebel, E. K. A1 - Buckley, D. A1 - Crause, L. A1 - Crawford, S. A1 - Gulbis, A. A1 - Hettlage, C. A1 - Hooper, E. A1 - Husser, T. -O. A1 - Kotze, P. A1 - Loaring, N. A1 - Nordsieck, K. H. A1 - O'Donoghue, D. A1 - Pickering, T. A1 - Potter, S. A1 - Colmenero, E. Romero A1 - Vaisanen, P. A1 - Williams, T. A1 - Wolf, M. A1 - Reichart, D. E. A1 - Ivarsen, K. M. A1 - Haislip, J. B. A1 - Nysewander, M. C. A1 - LaCluyze, A. P. T1 - Discovery of two new Galactic candidate luminous blue variables with Wide-field Infrared Survey Explorer JF - Monthly notices of the Royal Astronomical Society N2 - We report the discovery of two new Galactic candidate luminous blue variable (LBV) stars via detection of circular shells (typical of confirmed and candidate LBVs) and follow-up spectroscopy of their central stars. The shells were detected at 22 mu m in the archival data of the Mid-Infrared All Sky Survey carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up optical spectroscopy of the central stars of the shells conducted with the renewed Southern African Large Telescope (SALT) showed that their spectra are very similar to those of the well-known LBVs P Cygni and AG Car, and the recently discovered candidate LBV MN112, which implies the LBV classification for these stars as well. The LBV classification of both stars is supported by detection of their significant photometric variability: one of them brightened in the R and I bands by 0.68 +/- 0.10 and 0.61 +/- 0.04 mag, respectively, during the last 1318 years, while the second one (known as Hen 3-1383) varies its B, V, R, I and Ks brightnesses by similar or equal to 0.50.9 mag on time-scales from 10 d to decades. We also found significant changes in the spectrum of Hen 3-1383 on a time-scale of similar or equal to 3 months, which provides additional support for the LBV classification of this star. Further spectrophotometric monitoring of both stars is required to firmly prove their LBV status. We discuss a connection between the location of massive stars in the field and their fast rotation, and suggest that the LBV activity of the newly discovered candidate LBVs might be directly related to their possible runaway status. KW - line: identification KW - circumstellar matter KW - stars: emission-line, Be KW - stars: evolution KW - stars: individual: Hen 3-1383 KW - stars: massive Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2966.2012.20556.x SN - 0035-8711 VL - 421 IS - 4 SP - 3325 EP - 3337 PB - Oxford Univ. Press CY - Oxford ER -