TY - JOUR A1 - Jeltsch, Florian A1 - Moloney, Kirk A. A1 - Schurr, Frank Martin A1 - Köchy, Martin A1 - Schwager, Monika T1 - The state of plant population modelling in light of environmental change N2 - Plant population modelling has been around since the 1970s, providing a valuable approach to understanding plant ecology from a mechanistic standpoint. It is surprising then that this area of research has not grown in prominence with respect to other approaches employed in modelling plant systems. In this review, we provide an analysis of the development and role of modelling in the field of plant population biology through an exploration of where it has been, where it is now and, in our opinion, where it should be headed. We focus, in particular, on the role plant population modelling could play in ecological forecasting, an urgent need given current rates of regional and global environmental change. We suggest that a critical element limiting the current application of plant population modelling in environmental research is the trade-off between the necessary resolution and detail required to accurately characterize ecological dynamics pitted against the goal of generality, particularly at broad spatial scales. In addition to suggestions how to overcome the current shortcoming of data on the process-level we discuss two emerging strategies that may offer a way to overcome the described limitation: (1) application of a modern approach to spatial scaling from local processes to broader levels of interaction and (2) plant functional-type modelling. Finally we outline what we believe to be needed in developing these approaches towards a 'science of forecasting'. Y1 - 2008 U6 - https://doi.org/10.1016/j.ppees.2007.11.004 SN - 1433-8319 ER - TY - JOUR A1 - Köchy, Martin T1 - Effects of simulated daily precipitation patterns on annual plant populations depend on life stage and climatic region N2 - Background To improve the understanding of consequences of climate change for annual plant communities, I used a detailed, grid-based model that simulates the effect of daily rainfall variability on individual plants in five climatic regions on a gradient from 100 to 800 mm mean annual precipitation (MAP). The model explicitly considers moisture storage in the soil. I manipulated daily rainfall variability by changing the daily mean rain (DMR, rain volume on rainy days averaged across years for each day of the year) by ± 20%. At the same time I adjusted intervals appropriately between rainy days for keeping the mean annual volume constant. In factorial combination with changing DMR I also changed MAP by ± 20%. Results Increasing MAP generally increased water availability, establishment, and peak shoot biomass. Increasing DMR increased the time that water was continuously available to plants in the upper 15 to 30 cm of the soil (longest wet period, LWP). The effect of DMR diminished with increasing humidity of the climate. An interaction between water availability and density-dependent germination increased the establishment of seedlings in the arid region, but in the more humid regions the establishment of seedlings decreased with increasing DMR. As plants matured, competition among individuals and their productivity increased, but the size of these effects decreased with the humidity of the regions. Therefore, peak shoot biomass generally increased with increasing DMR but the effect size diminished from the semiarid to the mesic Mediterranean region. Increasing DMR reduced via LWP the annual variability of biomass in the semiarid and dry Mediterranean regions. Conclusion More rainstorms (greater DMR) increased the recharge of soil water reservoirs in more arid sites with consequences for germination, establishment, productivity, and population persistence. The order of magnitudes of DMR and MAP overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation. Y1 - 2008 UR - http://www.biomedcentral.com/1472-6785/8/4 ER - TY - BOOK A1 - Köchy, Martin T1 - Opposite trends in life stages of annual plants caused by daily rainfall variability - interaction with climate change N2 - Global Circulation Models of climate predict not only a change of annual precipitation amounts but also a shift in the daily distribution. To improve the understanding of the importance of daily rain pattern for annual plant communities, which represent a large portion of semi-natural vegetation in the Middle East, I used a detailed, spatially explicit model. The model explicitly considers water storage in the soil and has been parameterized and validated with data collected in field experiments in Israel and data from the literature. I manipulated daily rainfall variability by increasing the mean daily rain intensity on rainy days (MDI, rain volume/day) and decreasing intervals between rainy days while keeping the mean annual amount constant. In factorial combination, I also increased mean annual precipitation (MAP). I considered five climatic regions characterized by 100, 300, 450, 600, and 800 mm MAP. Increasing MDI decreased establishment when MAP was >250 mm but increased establishment at more arid sites. The negative effect of increasing MDI was compensated by increasing mortality with increasing MDI in dry and typical Mediterranean regions (c. 360-720 mm MAP). These effects were strongly tied to water availability in upper and lower soil layers and modified by competition among seedlings and adults. Increasing MAP generally increased water availability, establishment, and density. The order of magnitudes of MDI and MAP effects overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation. The effect size of MAP and MDI followed a sigmoid curve along the MAP gradient indicating that the semi-arid region (?300 mm MAP) is the most sensitive to precipitation change with regard to annual communities. Y1 - 2006 UR - http://www.martinkoechy.de/research/papers/Koechy2006.pdf ER - TY - JOUR A1 - Köchy, Martin T1 - Stochastic time series of daily precipitation for the interior of Israel N2 - This contribution describes a generator of stochastic time series of daily precipitation for the interior of Israel from c. 90 to 900 mm mean annual precipitation (MAP) as a tool for studies of daily rain variability. The probability of rainfall on a given day of the year is described by a regular Gaussian peak curve function. The amount of rain is drawn randomly from an exponential distribution whose mean is the daily mean rain amount (averaged across years for each day of the year) described by a flattened Gaussian peak curve. Parameters for the curves have been calculated from monthly aggregated, long-term rain records from seven meteorological stations. Parameters for arbitrary points on the MAP gradient are calculated from a regression equation with MAP as the only independent variable. The simple structure of the generator allows it to produce time series with daily rain patterns that are projected under climate change scenarios and simultaneously control MAP. Increasing within-year variability of daily precipitation amounts also increases among-year variability of MAP as predicted by global circulation models. Thus, the time series incorporate important characteristics for climate change research and represent a flexible tool for simulations of daily vegetation or surface hydrology dynamics. Y1 - 2006 UR - 1960 = dx.doi.org/10.1560/IJES_55_2_103 ER - TY - GEN A1 - Köchy, Martin T1 - Opposite trends in life stages of annual plants caused by daily rainfall variability BT - interaction with climate change N2 - Global Circulation Models of climate predict not only a change of annual precipitation amounts but also a shift in the daily distribution. To improve the understanding of the importance of daily rain pattern for annual plant communities, which represent a large portion of semi-natural vegetation in the Middle East, I used a detailed, spatially explicit model. The model explicitly considers water storage in the soil and has been parameterized and validated with data collected in field experiments in Israel and data from the literature. I manipulated daily rainfall variability by increasing the mean daily rain intensity on rainy days (MDI, rain volume/day) and decreasing intervals between rainy days while keeping the mean annual amount constant. In factorial combination, I also increased mean annual precipitation (MAP). I considered five climatic regions characterized by 100, 300, 450, 600, and 800 mm MAP. Increasing MDI decreased establishment when MAP was >250 mm but increased establishment at more arid sites. The negative effect of increasing MDI was compensated by increasing mortality with increasing MDI in dry and typical Mediterranean regions (c. 360–720 mm MAP). These effects were strongly tied to water availability in upper and lower soil layers and modified by competition among seedlings and adults. Increasing MAP generally increased water availability, establishment, and density. The order of magnitudes of MDI and MAP effects overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation. The effect size of MAP and MDI followed a sigmoid curve along the MAP gradient indicating that the semi-arid region (≈300 mm MAP) is the most sensitive to precipitation change with regard to annual communitie KW - Klimaänderung KW - Klimawandel KW - Einjahrespflanzen KW - Schwankung KW - tägliche Regenmenge KW - Israel KW - climate change KW - daily rainfall variability KW - annual plant KW - Israel Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14699 SP - 347 EP - 357 ER - TY - GEN A1 - Köchy, Martin T1 - Photodegradation of grass litter in semi-arid grasslands : a global perspective N2 - In a recent contribution in Nature (vol. 442, pp. 555-558) Austin & Vivanco showed that sunlight is the dominant factor for decomposition of grass litter in a semi-arid grassland in Argentine. The quantification of this effect was portrayed as a novel finding. I put this result in the context of three other publications from as early as 1980 that quantified photodegradation. My synopsis shows that photodegradation is an important process in semi-arid grasslands in South America, North America and eastern Europe. KW - Laubstreu KW - semi-arides Grasland KW - abiotische Zersetzung KW - UV-Licht KW - Schatten KW - leaf litter KW - semi-arid grassland KW - abiotic decomposition KW - UV radiation KW - shade Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12006 ER - TY - GEN A1 - Köchy, Martin T1 - Stochastic time series of daily precipitation for the interior of Israel N2 - This contribution describes a generator of stochastic time series of daily precipitation for the interior of Israel from c. 90 to 900 mm mean annual precipitation (MAP) as a tool for studies of daily rain variability. The probability of rainfall on a given day of the year is described by a regular Gaussian peak curve function. The amount of rain is drawn randomly from an exponential distribution whose mean is the daily mean rain amount (averaged across years for each day of the year) described by a flattened Gaussian peak curve. Parameters for the curves have been calculated from monthly aggregated, long-term rain records from seven meteorological stations. Parameters for arbitrary points on the MAP gradient are calculated from a regression equation with MAP as the only independent variable. The simple structure of the generator allows it to produce time series with daily rain patterns that are projected under climate change scenarios and simultaneously control MAP. Increasing within-year variability of daily precipitation amounts also increases among-year variability of MAP as predicted by global circulation models. Thus, the time series incorporate important characteristics for climate change research and represent a flexible tool for simulations of daily vegetation or surface hydrology dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 029 KW - stochastische Zeitreihen KW - täglicher Niederschlag KW - Israel KW - Klimawandel KW - stochastic time series KW - daily precipitation KW - Israel KW - climate change Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13155 ER - TY - GEN A1 - Köchy, Martin T1 - Effects of simulated daily precipitation patterns on annual plant populations depend on life stage and climatic region N2 - Background: To improve the understanding of consequences of climate change for annual plant communities, I used a detailed, grid-based model that simulates the effect of daily rainfall variability on individual plants in five climatic regions on a gradient from 100 to 800 mm mean annual precipitation (MAP). The model explicitly considers moisture storage in the soil. I manipulated daily rainfall variability by changing the daily mean rain (DMR, rain volume on rainy days averaged across years for each day of the year) by ± 20%. At the same time I adjusted intervals appropriately between rainy days for keeping the mean annual volume constant. In factorial combination with changing DMR I also changed MAP by ± 20%. Results: Increasing MAP generally increased water availability, establishment, and peak shoot biomass. Increasing DMR increased the time that water was continuously available to plants in the upper 15 to 30 cm of the soil (longest wet period, LWP). The effect of DMR diminished with increasing humidity of the climate. An interaction between water availability and density-dependent germination increased the establishment of seedlings in the arid region, but in the more humid regions the establishment of seedlings decreased with increasing DMR. As plants matured, competition among individuals and their productivity increased, but the size of these effects decreased with the humidity of the regions. Therefore, peak shoot biomass generally increased with increasing DMR but the effect size diminished from the semiarid to the mesic Mediterranean region. Increasing DMR reduced via LWP the annual variability of biomass in the semiarid and dry Mediterranean regions. Conclusion: More rainstorms (greater DMR) increased the recharge of soil water reservoirs in more arid sites with consequences for germination, establishment, productivity, and population persistence. The order of magnitudes of DMR and MAP overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 097 Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-33747 ER - TY - GEN A1 - Köchy, Martin A1 - Bråkenhielm, Sven T1 - Separation of effects of moderate N deposition from natural change in ground vegetation of forests and bogs N2 - The effect of moderate rates of nitrogen deposition on ground floor vegetation is poorly predicted by uncontrolled surveys or fertilization experiments using high rates of nitrogen (N) addition. We compared the temporal trends of ground floor vegetation in permanent plots with moderate (7–13 kg ha−1 year−1) and lower bulk N deposition (4–6 kg ha−1 year−1) in southern Sweden during 1982–1998. We examined whether trends differed between growth forms (vascular plants and bryophytes) and vegetation types (three types of coniferous forest, deciduous forest, and bog). Trends of site-standardized cover and richness varied among growth forms, vegetation types, and deposition regions. Cover in spruce forests decreased at the same rate with both moderate and low deposition. In pine forests cover decreased faster with moderate deposition and in bogs cover decreased faster with low deposition. Cover of bryophytes in spruce forests increased at the same rate with both moderate and low deposition. In pine forests cover decreased faster with moderate deposition and in bogs and deciduous forests there was a strong non-linear increase with moderate deposition. The trend of number of vascular plants was constant with moderate and decreased with low deposition. We found no trend in the number of bryophyte species. We propose that the decrease of cover and number with low deposition was related to normal ecosystem development (increased shading), suggesting that N deposition maintained or increased the competitiveness of some species in the moderate-deposition region. Deposition had no consistent negative effect on vegetation suggesting that it is less important than normal successional processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 034 KW - Nitrogen deposition KW - Vascular plants KW - Bryophytes KW - Species richness KW - Succession KW - Understorey Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16621 ER - TY - JOUR A1 - Köchy, Martin A1 - Mathaj, Martin A1 - Jeltsch, Florian A1 - Malkinson, Dan T1 - Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes N2 - Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future. Y1 - 2008 UR - http://www.springerlink.com/content/gj0567116q770036/ U6 - https://doi.org/10.1007/s10113-008-0048-6 ER -