TY - JOUR A1 - Günther, Oliver A1 - Schüle, Manja A1 - Zurell, Damaris A1 - Jeltsch, Florian A1 - Roeleke, Manuel A1 - Kampe, Heike A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Engbert, Ralf A1 - Elsner, Birgit A1 - Schlangen, David A1 - Agrofylax, Luisa A1 - Georgi, Doreen A1 - Weymar, Mathias A1 - Wagener, Thorsten A1 - Bookhagen, Bodo A1 - Eibl, Eva P. S. A1 - Korup, Oliver A1 - Oswald, Sascha Eric A1 - Thieken, Annegret Henriette A1 - van der Beek, Peter T1 - Portal Wissen = Exzellenz JF - Portal Wissen: Das Forschungsmagazin der Universität Potsdam N2 - Was nicht nur gut oder sehr gut ist, nennen wir gern exzellent. Aber was meint das eigentlich? Vom lateinischen „excellere“ kommend, beschreibt es Dinge, Personen oder Handlungen, die „hervor-“ oder „herausragen“ aus der Menge, sich „auszeichnen“ gegenüber anderen. Mehr geht nicht. Exzellenz ist das Mittel der Wahl, wenn es darum geht, der Erste oder Beste zu sein. Und das macht auch vor der Forschung nicht halt. Wer auf die Universität Potsdam schaut, findet zahlreiche ausgezeichnete Forschende, hervorragende Projekte und immer wieder auch aufsehenerregende Erkenntnisse, Veröffentlichungen und Ergebnisse. Aber ist die UP auch exzellent? Eine Frage, die 2023 ganz sicher andere Wellen schlägt als vielleicht vor 20 Jahren. Denn seit dem Start der Exzellenzinitiative 2005 gelten als – wörtlich – exzellent jene Hochschulen, denen es gelingt, in dem umfangreichsten Förderprogramm für Wissenschaft in Deutschland einen Zuschlag zu erhalten. Egal ob in Form von Graduiertenschulen, Forschungsclustern oder – seit Fortsetzung des Programms ab 2019 unter dem Titel „Exzellenzstrategie“ – ganzen Exzellenzuniversitäten: Wer im Kreis der Forschungsuniversitäten zu den Besten gehören will, braucht das Siegel der Exzellenz. In der gerade eingeläuteten neuen Wettbewerbsrunde der „Exzellenzstrategie des Bundes und der Länder“ bewirbt sich die Universität Potsdam mit drei Clusterskizzen um Förderung. Ein Antrag kommt aus der Ökologie- und Biodiversitätsforschung. Ziel ist es, ein komplexes Bild ökologischer Prozesse zu zeichnen – und dabei die Rolle von einzelnen Individuen ebenso zu betrachten wie das Zusammenwirken vieler Arten in einem Ökosystem, um die Funktion der Artenvielfalt genauer zu bestimmen. Eine zweite Skizze haben die Kognitionswissenschaften eingereicht. Hier soll das komplexe Nebeneinander von Sprache und Kognition, Entwicklung und Lernen sowie Motivation und Verhalten als dynamisches Miteinander erforscht werden – wobei auch mit den Erziehungswissenschaften kooperiert wird, um verknüpfte Lernund Bildungsprozesse stets mitzudenken. Der dritte Antrag aus den Geo- und Umweltwissenschaften nimmt extreme und besonders folgenschwere Naturgefahren und -prozesse wie Überschwemmungen und Dürren in den Blick. Die Forschenden untersuchen die Extremereignisse mit besonderem Fokus auf deren Wechselwirkung mit der Gesellschaft, um mit ihnen einhergehende Risiken und Schäden besser einschätzen sowie künftig rechtzeitig Maßnahmen einleiten zu können. „Alle drei Anträge zeichnen ein hervorragendes Bild unserer Leistungsfähigkeit“, betont der Präsident der Universität, Prof. Oliver Günther, Ph.D. „Die Skizzen dokumentieren eindrucksvoll unser Engagement, vorhandene Forschungsexzellenz sowie die Potenziale der Universität Potsdam insgesamt. Allein die Tatsache, dass sich drei schlagkräftige Konsortien in ganz unterschiedlichen Themenbereichen zusammengefunden haben, zeigt, dass wir auf unserem Weg in die Spitzengruppe der deutschen Universitäten einen guten Schritt vorangekommen sind.“ In diesem Heft schauen wir, was sich in und hinter diesen Anträgen verbirgt: Wir haben mit den Wissenschaftlerinnen und Wissenschaftlern gesprochen, die sie geschrieben haben, und sie gefragt, was sie sich vornehmen, sollten sie den Zuschlag erhalten und ein Cluster an die Universität holen. Wir haben aber auch auf die Forschung geschaut, die zu den Anträgen geführt hat und die schon länger das Profil der Universität prägt und ihr national wie international Anerkennung eingebracht hat. Wir stellen eine kleine Auswahl an Projekten, Methoden und Forschenden vor, um zu zeigen, warum in diesen Anträgen tatsächlich exzellente Forschung steckt! Übrigens: Auch „Exzellenz“ ist nicht das Ende der Fahnenstange. Immerhin lässt sich das Adjektiv exzellent sogar steigern. In diesem Sinne wünschen wir exzellentestes Vergnügen beim Lesen! T3 - Portal Wissen: Das Forschungsmagazin der Universität Potsdam [Deutsche Ausgabe] - 02/2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-611440 SN - 2194-4245 IS - 02/2023 ER - TY - RPRT A1 - Thieken, Annegret Henriette A1 - Otto, Antje A1 - Haupt, Wolfgang A1 - Eckersley, Peter A1 - Kern, Kristine A1 - Ullrich, Susann A1 - Hautz, Timo A1 - Rocker, Philipp A1 - Schulz, Rabea A1 - Sausen, Hannah A1 - Dillenardt, Lisa A1 - Rose, Claudia A1 - Schmidt, Katja A1 - Huber, Bettina A1 - Sterzel, Till A1 - Marken, Marieke A1 - Miechielsen, Milena ED - Otto, Antje ED - Thieken, Annegret Henriette T1 - Urbane Resilienz gegenüber extremen Wetterereignissen T1 - Urban resilience to extreme weather events BT - Gemeinsamer Verbundabschlussbericht des Forschungsprojektes ExTrass BT - Joint final report of the research project ExTrass N2 - Aufgrund der hohen Konzentration von Bevölkerung, ökonomischen Werten und Infrastrukturen können Städte stark von extremen Wetterereignissen getroffen werden. Insbesondere Hitzewellen und Überflutungen in Folge von Starkregen verursachen in Städten immense gesundheitliche und finanzielle Schäden. Um Schäden zu verringern oder gar zu vermeiden, ist es notwendig, entsprechende Vorsorge- und Klimaanpassungsmaßnahmen zu implementieren. Im Projekt „Urbane Resilienz gegenüber extremen Wetterereignissen – Typologien und Transfer von Anpassungsstrategien in kleinen Großstädten und Mittelstädten” (ExTrass) lag der Fokus auf den beiden extremen Wetterereignissen Hitze und Starkregen sowie auf kleineren Großstädten (100.000 bis 500.000 Einwohner:innen) und kreisfreien Mittelstädten mit mehr als 50.000 Einwohner:innen. Im Projekt wurde die Stärkung der Klimaresilienz als Verbesserung der Fähigkeiten von Städten, aus vergangenen Ereignissen zu lernen sowie sich an antizipierte Gefahren anzupassen, verstanden. Klimaanpassung wurde demnach als ein Prozess aufgefasst, der durch die Umsetzung von potenziell schadensreduzierenden Maßnahmen beschreib- und operationalisierbar wird. Das Projekt hatte zwei Ziele: Erstens sollte die Klimaresilienz in den drei Fallstudienstädten Potsdam, Remscheid und Würzburg messbar gestärkt werden. Zweitens sollten Transferpotenziale zwischen Groß- und Mittelstädten in Deutschland identifiziert und besser nutzbar gemacht werden, damit die Wirkung von Pilotvorhaben über die direkt involvierten Städte hinausgehen kann. Im Projekt standen folgende vier Leitfragen im Fokus: • Wie verbreitet sind Klimaanpassungsaktivitäten in Großstädten und größeren kreisfreien Mittelstädten in Deutschland? • Welche hemmenden und begünstigenden Faktoren beeinflussen die Klimaanpassung? • Welche Maßnahmen der Klimaanpassung werden tatsächlich umgesetzt, und wie kann die Umsetzung verbessert werden? Was behindert? • Inwiefern lassen sich Beispiele guter Praxis auf andere Städte übertragen, adaptieren oder weiterentwickeln? Die Hauptergebnisse zu diesen Fragestellungen sind im vorliegenden Bericht zusammengefasst. N2 - Due to the high concentration of population, economic assets and infrastructure, cities are severely affected by the effects of climate change. In particular, heat waves and flooding as a result of heavy rain cause immense health and financial damages in cities. In order to reduce or even avoid the effects of such extreme weather events, appropriate precautionary and climate adaptation measures must be implemented. The project "Urban resilience to extreme weather events – typologies and transfer of adaptation strategies in small and medium-sized cities" (ExTrass) focused on the two extreme weather events heat and heavy rain as well as on smaller cities (100,000 to 500,000 inhabitants) and independent medium-sized towns with more than 50,000 inhabitants. Within the project, strengthening climate resilience was understood as improving the ability of cities to learn from past events and adapt to anticipated hazards. Accordingly, climate adaptation was seen as a process that can be described and operationalized through the implementation of potentially damage-reducing measures. The project had two goals: The first goal was to measurably strengthen climate resilience in the three case study cities of Potsdam, Remscheid and Würzburg. The second goal was to identify and improve the transfer potential of climate adaptation measures between cities in Germany. The project focused on the following four key questions: • How widespread are climate adaptation activities in large cities and larger independent medium-sized cities in Germany? • Which inhibiting and enabling factors influence climate adaptation and how do they work? • Which climate adaptation measures are actually being implemented and how can implementation be improved? What hinders implementation? • To what extent can examples of good practice be transferred, adapted or further developed to other cities? The main results of these questions have been summarized in the present report. KW - Klimaanpassung KW - Resilienz KW - Hitze KW - Starkregen KW - Risikokommunikation KW - Stadtplanung KW - Begrünung KW - climate adaptation KW - resilience KW - heat KW - heavy rain KW - risk communication KW - urban planning KW - greening Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-555427 ER - TY - RPRT A1 - Huber, Bettina A1 - Miechielsen, Milena A1 - Otto, Antje A1 - Schmidt, Katja A1 - Ullrich, Susann A1 - Deppermann, Lara-Helene A1 - Eckersley, Peter A1 - Haupt, Wolfgang A1 - Heidenreich, Anna A1 - Kern, Kristine A1 - Lipp, Torsten A1 - Neumann, Nina A1 - Schneider, Philipp A1 - Sterzel, Till A1 - Thieken, Annegret Henriette T1 - Instrumente und Maßnahmen der kommunalen Klimaanpassung T1 - Instruments and measures of municipal climate adaptation BT - Empirische Befunde für einen erfolgreichen Transfer BT - Empirical findings for a successful transfer N2 - Städte sind aufgrund ihrer Agglomeration von Bevölkerung, Sachwerten und Infrastrukturen in besonderem Maße von extremen Wetterereignissen wie Starkregen und Hitze betroffen. Zahlreiche Überflutungsereignisse infolge von Starkregen traten in den letzten Jahren in verschiedenen Regionen Deutschlands auf und führten nicht nur zu Schäden in zwei- bis dreistelliger Millionenhöhe, sondern auch zu Todesopfern. Und auch Hitzewellen, wie sie in den vergangenen Jahren vermehrt aufgetreten sind, bergen gesundheitliche Risiken, welche sich auch in verschiedenen Schätzungen zu Hitzetodesfällen wiederfinden. Um diesen Risiken zu begegnen und Schäden infolge von Wetterextremen zu reduzieren, entwickeln viele Kommunen bereits Strategien und Konzepte im Kontext der Klimaanpassung und/oder setzen Anpassungsmaßnahmen um. Neben der Entwicklung und Umsetzung eigener Ideen orientieren sich Städte dabei u. a. an Leitfäden und Beispielen aus der Literatur, Erfahrungen aus anderen Städten oder an Ergebnissen aus Forschungsprojekten. Dieser Lern- und Transferprozess, der eine Übertragung von Maßnahmen oder Instrumenten der Klimaanpassung von einem Ort auf einen anderen beinhaltet, ist bislang noch unzureichend erforscht und verstanden. Der vorliegende Bericht untersucht deshalb ebendiesen Lern- und Transferprozess zwischen sowie innerhalb von Städten sowie das Transferpotenzial konkreter Wissenstransfer-Medien, Instrumente und Maßnahmen. Damit wird das Ziel verfolgt, ein besseres Verständnis dieser Prozesse zu entwickeln und einen Beitrag zur Verbesserung des Transfers von kommunalen Klimaanpassungsaktivitäten zu leisten. Der vorliegende Inhalt baut dabei auf einer vorangegangenen Analyse des Forschungsstands zum Transfer von Policies durch Haupt et al. (2021) auf und versucht, den bereits generierten Wissensstand auf der Ebene von Policies nun um die Ebene konkreter Instrumente und Maßnahmen zu ergänzen sowie durch empirische Befunde zu ausgewählten Maßnahmen zu untermauern. Die Wissens- und Datengrundlage dieses Berichts umfasst einen Mix aus verschiedenen (Online)-Befragungen und Interviews mit Vertreter:innen relevanter Akteursgruppen, vor allem Vertreter:innen von Stadtverwaltungen, sowie den Erfahrungswerten der drei ExTrass-Fallstudienstädte Potsdam, Remscheid und Würzburg. Nach einer Einleitung beschäftigt sich Kapitel 2 mit übergeordneten Faktoren der Übertragbarkeit bzw. des Transfers. Kapitel 2.1 bietet hierbei eine Zusammenfassung zum aktuellen Wissensstand hinsichtlich des Transfers von Policies im Bereich der städtischen Klimapolitik gemäß Haupt et al. (2021). Hier werden zentrale Kriterien für einen erfolgreichen Transfer herausgearbeitet, um einen Anknüpfungspunkt für die folgenden Inhalte und empirischen Befunde auf der Ebene konkreter Instrumente und Maßnahmen zu bieten. Kapitel 2.2 schließt hieran an und präsentiert Erkenntnisse aus einer weitreichenden Kommunalbefragung. Hierbei wurde untersucht ob und welche Klimaanpassungsmaßnahmen in den Städten bereits umgesetzt werden, welche fördernden und hemmenden Aspekte es dabei gibt und welche Erfahrungen beim Transfer von Wissen und Ideen bereits vorliegen. Kapitel 3 untersucht die Rolle verschiedener Medien des Wissenstransfers und widmet sich dabei beispielhaft Leitfäden zur Klimaanpassung und Maßnahmensteckbriefen. Kapitel 3.1 beantwortet dabei Fragen nach der Relevanz und Zugänglichkeit von Leitfäden, deren Stärken und Schwächen, sowie konkreten Anforderungen vonseiten befragter Personen. Außerdem werden acht ausgewählte Leitfäden vorgestellt und komprimiert auf ihre Transferpotenziale hin eingeschätzt. Kapitel 3.2 betrachtet Maßnahmensteckbriefe als Medien des Wissenstransfers und arbeitet zentrale Aspekte für einen praxisrelevanten inhaltlichen Aufbau heraus, um basierend darauf einen Muster-Maßnahmensteckbrief für Klimaanpassungsmaßnahmen zu entwickeln und vorzuschlagen. Kapitel 4 beschäftigt sich mit sehr konkreten kommunalen Erfahrungen rund um den Transfer von sieben ausgewählten Instrumenten und Maßnahmen und bietet zahlreiche empirische Befunde aus den Kommunen, basierend auf der Kommunalbefragung, verschiedenen Interviews und den Erfahrungen aus der Projektarbeit. Die folgenden sieben Instrumente und Maßnahmen wurden ausgewählt, um eine große Breite städtischer Klimaanpassungsaktivitäten zu betrachten: 1) Klimafunktionskarten (Stadtklimakarten), 2) Starkregengefahrenkarten, 3) Checklisten zur Klimaanpassung in der Bauleitplanung, 4) Verbot von Schottergärten in Bebauungsplänen, 5) Fassadenbegrünungen, 6) klimaangepasste Gestaltung von Grün- und Freiflächen sowie 7) Handlungsempfehlungen für Betreuungseinrichtungen zum Umgang mit Hitze und Starkregen. Für jede dieser Klimaanpassungsaktivitäten wird auf Ebene der Kommunen Ziel, Verbreitung und Erscheinungsformen, Umsetzung anhand konkreter Beispiele, fördernde und hemmende Faktoren sowievorliegende Erfahrungen zu und Hinweisen auf Transfer dargestellt. Kapitel 5 schließt den vorliegenden Bericht ab, indem zentrale Transfer-Barrieren aus den gewonnenen Erkenntnissen aufgegriffen und entsprechende Empfehlungen an verschiedene Ebenen der Politik ausgesprochen werden. Diese Empfehlungen zur Verbesserung des Transfers von klimaanpassungsrelevanten Instrumenten, Strategien und Maßnahmen umfassen 1) die Verbesserung des Austauschs zwischen verschiedenen Städten, 2) die Verbesserung der Zugänglichkeit von Wissen und Erfahrungen, 3) die Schaffung von Vernetzungsstrukturen innerhalb von Städten sowie 4) bestehende Wissenslücken zu schließen. Die Autor:innen des vorliegenden Berichts hoffen, durch die vielfältigen Untersuchungsaspekte einen Beitrag zum besseren Verständnis der Lern- und Transferprozesse und zur Verbesserung des Transfers kommunaler Klimaanpassungsaktivitäten zu leisten. N2 - Due to their agglomeration of population, material assets and infrastructures, cities are particularly affected by extreme weather events such as heavy rain and heat. Numerous flooding events as a result of heavy rainfall occurred in various regions of Germany in the last years, not only resulted in losses in the double- to triple-digit million range, but also in fatalities. And heat waves which became more frequent in recent years pose health risks, including numerous cases of death. To counter these risks and to reduce damage resulting from weather extremes, many cities are already developing strategies and concepts in the context of climate adaptation and/or implement measures. In addition to developing and implementing their own ideas, cities are guided by guidelines and examples from literature, experiences from other cities, or results from research projects, among other things. This learning and transfer process, which involves the transfer of climate adaptation measures or instruments from one place to another, has not yet been sufficiently researched and understood. This report therefore examines this learning and transfer process between and within cities as well as the transfer potential of specific knowledge transfer media, instruments and measures. The aim is to develop a better understanding of these processes and to contribute to improving the transfer of municipal climate adaptation activities. This content builds on a previous analysis of the state of research on policy transfer by Haupt et al. (2021) and attempts to complement the already generated state of knowledge on the level of policies with the level of concrete instruments and measures and to substantiate it with empirical findings. The knowledge and data basis of this report comprises a mix of various (online) surveys and interviews with representatives of relevant stakeholder groups, especially representatives of city administrations, as well as the experiences of the three case study cities within the ExTrass-project, namely Potsdam, Remscheid and Würzburg. After an introduction, chapter 2 deals with overarching factors of transferability. Chapter 2.1 provides a summary of the current state of knowledge regarding the transfer of policies in the field of urban climate policy according to Haupt et al. (2021). Here, central criteria for a successful transfer are elaborated in order to provide a starting point for the following contents and empirical findings on the level of concrete instruments and measures. Chapter 2.2 follows on from this and presents findings from a wide-ranging municipal survey. Here, it was investigated whether and which climate adaptation measures are already implemented in the cities, which supporting and inhibiting aspects are present in this context, and which experiences regarding the transfer of knowledge and ideas already exist. Chapter 3 examines the role of different knowledge transfer media, focusing on guidelines on climate adaptation and fact sheets for adaptation measures as examples. Chapter 3.1 answers questions about the relevance and accessibility of guidelines, their strengths and weaknesses, as well as concrete requirements articulated by interviewees. In addition, eight selected guidelines are shortly presented and assessed in terms of their transfer potential. Chapter 3.2 looks at fact sheets for adaptation measures and elaborates central aspects for a practicable content structure and ultimately results in a proposed template fact sheet for climate adaptation measure. Chapter 4 deals with very concrete municipal experiences regarding the transfer of seven selected instruments and measures and offers numerous empirical findings from municipalities, based on the municipal survey, various interviews and the experiences drawn from the project work. The following seven tools and measures were selected to look at a broad range of urban climate adaptation activities: 1) climate function maps (urban climate maps), 2) heavy rainfall hazard maps, 3) climate adaptation checklists in urban land use planning, 4) prohibition of gravel gardens in development plans, 5) facade greening, 6) climate-adapted design of green and open spaces, and 7) recommendations for care facilities to deal with heat and heavy rain. For each of these instruments or measures at the municipality level the purpose or goal, its dissemination and manifestations, its implementation through practical examples, its supporting and inhibiting factors as well as existing experiences with and evidence of transfer are presented. Chapter 5 concludes this report by addressing key transfer barriers and making formulating recommendations for different political levels. These recommendations for improving the transfer of climate adaptation-related instruments, strategies and measures include: 1) improving the exchange between different cities, 2) improving the accessibility of knowledge and experience, 3) creating networking structures within cities and 4) closing existing knowledge gaps. The authors of this report hope to contribute to a better understanding of the learning and transfer processes and to the improvement of the transfer of municipal climate adaptation activities through the manifold aspects of this study. KW - Klimaanpassung KW - Übertragbarkeit KW - Anpassungsmaßnahmen KW - Wissenstransfer KW - Climate adaptation KW - Transferablity KW - adapatation measures KW - knowledge transfer KW - Modellstadt KW - model city KW - Pilotmaßnahmen KW - pilot measures Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-563456 ER - TY - JOUR A1 - Vorogushyn, Sergiy A1 - Apel, Heiko A1 - Kemter, Matthias A1 - Thieken, Annegret Henriette T1 - Analyse der Hochwassergefährdung im Ahrtal unter Berücksichtigung historischer Hochwasser T1 - Analysis of flood hazard in the Ahr Valley considering historical floods JF - Hydrologie und Wasserbewirtschaftung N2 - The flood disaster in July 2021 in western Germany calls for a critical discussion on flood hazard assessment, revision of flood hazard maps and communication of extreme flood scenarios. In the presented work, extreme value analysis was carried out for annual maximum peak flow series at the Altenahr gauge on the river Ahr. We compared flood statistics with and without considering historical flood events. An estimate for the return period of the recent flood based on the Generalized Extreme Value (GEV) distribution considering historical floods ranges between about 2600 and above 58700 years (90% confidence interval) with a median of approximately 8600 years, whereas an estimate based on the 74-year long systematically recorded flow series would theoretically exceed 100 million years. Consideration of historical floods dramatically changes the flood quantiles that are used for the generation of official flood hazard maps. The fitting of the GEV to the time series with historical floods reveals, however, that the model potentially inadequately reflects the flood population. In this case, we might face a mixed sample, in which extreme floods result from very different processes compared to smaller floods. Hence, the probabilities of extreme floods could be much larger than those resulting from a single GEV model. The application of a process-based mixed flood distribution should be explored in future work.
The comparison of the official HQextrem flood maps for the AhrValley with the inundation areas from July 2021 shows a striking discrepancy in the affected areas and calls for revision of design values used to define extreme flood scenarios. The hydrodynamic simulations of a 1000-year return period flood considering historical events and of the 1804 flood scenario compare much better to the flooded areas from July 2021, though both scenarios still underestimated the flood extent.
Particular effects such as clogging of bridges and geomorphological changes of the river channel led to considerably larger flooded areas in July 2021 compared to the simulation results. Based on this analysis, we call for a consistent definition of HQextrem for flood hazard mapping in Germany, and suggest using high flood quantiles in the range of a 1,000-year flood. Flood maps should additionally include model-based reconstructions of the largest, reliably documented historical floods and/or synthetic worst-case scenarios. This would be an important step towards protecting potentially affected population and disaster management from surprises due to very rare and extreme flood events in future. N2 - Die Hochwasserkatastrophe im Juli 2021 in Westdeutschland erfordert eine kritische Diskussion über die Abschätzung der Hochwassergefährdung, Aktualisierung von Hochwassergefahrenkarten und Kommunikation von extremen Hochwasserszenarien. In der vorliegenden Arbeit wurde die Extremwertstatistik für die jährlichen maximalen Spitzenabflüsse am Pegel Altenahr im Ahrtal mit und ohne Berücksichtigung historischer Hochwasser berechnet und verglichen. Die Schätzung der Wiederkehrperiode für das aktuelle Hochwasser mittels Generalisierter Extremwertverteilung (GEV) unter Berücksichtigung historischer Hochwasser schwankt zwischen etwa 2.600 und über 58.700 Jahren (90%-Konfidenzintervall) mit einem Median bei etwa 8.600 Jahren, wogegen die Schätzung, die nur auf der systematisch gemessenen Abflusszeitreihe von 74 Jahren basiert, theoretisch eine Wiederkehrperiode von über 100 Millionen Jahren ergeben würde. Die Berücksichtigung der historischen Hochwasser führt zu einer dramatischen Änderung der Hochwasserquan- tile, die für eine Gefahrenkartierung zugrunde gelegt werden. Die Anpassung der GEV an die Zeitreihe mit historischen Hochwassern zeigt dennoch, dass das GEV-Modell möglicherweise die Grundgesamtheit der Hochwasser im Ahrtal nicht adäquat abbilden kann. Es könnte sich im vorliegenden Fall um eine gemischte Stichprobe handeln, in der die extremen Hochwasser im Vergleich zu kleineren Ereignissen durch besondere Prozesse hervorgerufen werden. Somit könnten die Wahrscheinlichkeiten von extremen Hochwassern deutlich größer sein, als aus dem GEV-Modell hervorgeht. Hier sollte in Zukunft die Anwendung einer prozessbasierten Mischverteilung untersucht werden. Der Vergleich von amtlichen Gefahrenkarten zu Extremhochwassern (HQextrem) im Ahrtal mit den Überflutungsflächen vom Juli 2021 zeigt eine deutliche Diskrepanz in den betroffenen Gebieten und die Notwendigkeit, die Grundlagen zur Erstellung der Extremszenarien zu überdenken. Die hydrodynamisch-numerischen Simulationen von 1.000-jährlichen Hochwassern (HQ1000) unter Berücksichtigung historischer Ereignisse und des größten historischen Hochwassers 1804 können die Gefährdung des Juli-Hochwassers 2021 deutlich besser widerspiegeln, wenngleich auch diese beiden Szenarien die Überflutungsflächen unterschätzen. Besondere Effekte wie die Verklausung von Brücken und die geomorphologischen Änderungen im Flussschlauch führten zu noch größeren Überflutungs- flächen im Juli 2021, als die Simulationsergebnisse zeigten. Basierend auf dieser Analyse wird eine einheitliche Festlegung von HQextrem bei Hochwassergefahrenkartierungen in Deutschland vorgeschlagen, die sich an höheren Hochwasserquantilen im Bereich von HQ1000 orientiert. Zusätzlich sollen simulationsbasierte Rekonstruktionen von den größten verlässlich dokumentierten historischen Hochwassern und/oder synthetische Worst-Case-Szenarien in den Hochwassergefahrenkarten gesondert dargestellt werden. Damit wird ein wichtiger Beitrag geleistet, um die potenziell betroffene Bevölkerung und das Katastrophenmanagement vor Überraschungen durch sehr seltene und extreme Hochwasser in Zukunft besser zu schützen. KW - Extreme value statistics KW - historical floods KW - flood hazard mapping; KW - inundation simulation KW - Ahr River KW - Extremwertstatistik KW - historische Hochwasser KW - Gefahrenkarten KW - Überflutungssimulation KW - Ahr Y1 - 2022 U6 - https://doi.org/10.5675/HyWa_2022.5_2 SN - 1439-1783 VL - 66 IS - 5 SP - 244 EP - 254 PB - Bundesanst. für Gewässerkunde CY - Koblenz ER - TY - RPRT A1 - Dillenardt, Lisa A1 - Thieken, Annegret Henriette T1 - Untersuchung der räumlichen Verteilung von Bodenkühlpotenzialen in Remscheid N2 - Eine Zunahme der allgemeinen Temperatur auf Grund des Klimawandels und die damit einhergehende Zunahme von Hitzewellen führten dazu, dass das Landesamt für Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV) einen Leitfaden für den Schutz der positiven Klimafunktion urbaner Böden herausgab. Darauf aufbauend wurde auf regionaler Ebene für die Stadt Düsseldorf die Kühlleistung der urbanen Böden quantifiziert, um besonders schutzwürdige Bereiche zu identifizieren. Im Rahmen des Projektes ExTrass sollte nun die Kühlleistung urbaner Böden innerhalb Remscheids quantifiziert werden, jedoch auf Basis von frei zugänglichen Daten. Eine solche Datengrundlage schließt eine Modellierung des Bodenwasserhaushaltes, welches die Grundlage der Quantifizierung in Düsseldorf war, für Remscheid aus. Jedoch bietet der vorgestellte Ansatz die Möglichkeit, eine solche Untersuchung auch in anderen Gemeinden innerhalb Deutschlands mit relativ wenig Aufwand durchzuführen. Die Kühlleistung der Böden wurde über die nutzbare Feldkapazität abgeschätzt, welche das Wasserspeichervolumen der obersten durchwurzelten Bodenzone angibt. Es ist der Bodenwasserspeicher, der Wasser für die Evapotranspiration zur Verfügung stellt und damit maßgeblich die Kühlleistung eines Bodens definiert, d.h. durch direkte Evaporation des Bodenwassers sowie durch die Transpiration von Wasser durch Pflanzen. In die Erstellung der Karte sind eingegangen: (a) die Bodenkarte Nordrhein-Westfalens (BK50), um die nutzbare Feldkapazität (nFK) je Fläche zu bestimmen; (b) der Landnutzungsdatensatz UrbanAtlas 2012, in Verbindung mit einer Literaturrecherche, um den Einfluss der Landnutzung auf die Werte der nFK, insbesondere im Hinblick auf Versiegelung und Verdichtung herzuleiten; und (c) OpenStreetMap (OSM), um den Anteil der versiegelten Flächen genauer zu bestimmen, als dies auf Basis des UrbanAtlas möglich gewesen wäre. Es hat sich gezeigt, dass dieser Ansatz geeignet ist, um die räumliche Verteilung der potenziellen Bodenkühlfunktion innerhalb einer Stadt zu untersuchen. Es ist zu beachten, dass der Einfluss des Grundwassers in Remscheid nicht berücksichtigt werden konnte. Denn es ist damit zu rechnen, dass die Grundwasserverhältnisse aufgrund der geologischen und topographischen Situation in Remscheid kleinräumig Variationen unterliegen und es somit keinen durchgängigen und kartierten Aquifer gibt. Kleingartenanlagen, Parks und Friedhöhe im innerstädtischen Bereich und allgemein die Landnutzungsklassen Wald und Grünland wurden als Flächen mit einem besonders hohem potenziellen Bodenkühlpotenzial identifiziert. Solche Flächen sind besonders schützenswert. Die Analyse der Speicherfüllstände der oberen Bodenzone, basierend auf der erstellten Karte der potenziellen Bodenkühlfunktion und der klimatischen Wasserbilanz, ergab, dass besonders innerstädtische Flächen, die einen kleinen Bodenwasserspeicher haben, in einem trockenen Jahr bereits früh im Sommer ihre Kühlfunktion verlieren und bei Hitzewellen somit eine verringerte positive Klimafunktion haben. Gestützt wird diese Aussage durch eine Auswertung des normalisierten differenzierten Vegetationsindex (NDVI), der genutzt wurde, um die Veränderung der Pflanzenvitalität vor und nach einer Hitzeperiode im Juni/Juli 2018 zu untersuchen. Messungen mit Meteobikes, einer Vorrichtung, die dazu geeignet ist, während einer Radfahrt kontinuierlich die Temperatur zu messen, stützen die Erkenntnis, dass innerstädtische Grünflächen wie Parks eine positive Wirkung auf das urbane Mikroklima haben. Weiterhin zeigen diese Messungen, dass die Topographie innerhalb des Untersuchungsgebietes die Aufheizung einzelner Flächen und die Temperaturverteilung vermutlich mitbestimmt. Die hier vorgestellte Karte der potenziellen Kühlfunktion für Remscheid sollte als Ergänzung in die Klimafunktionskarte für Remscheid eingehen und den bestehenden Layer „flächenhafte Klimafunktion“, der nur die Landnutzung berücksichtigt, ersetzen. KW - Klimaanpassung KW - urbane Böden KW - Bodenkühlpotenzial KW - nutzbare Feldkapazität Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526670 ER - TY - RPRT A1 - Berghäuser, Lisa A1 - Schoppa, Lukas A1 - Ulrich, Jana A1 - Dillenardt, Lisa A1 - Jurado, Oscar E. A1 - Passow, Christian A1 - Samprogna Mohor, Guilherme A1 - Seleem, Omar A1 - Petrow, Theresia A1 - Thieken, Annegret Henriette T1 - Starkregen in Berlin BT - Meteorologische Ereignisrekonstruktion und Betroffenenbefragung N2 - In den Sommern der Jahre 2017 und 2019 kam es in Berlin an mehreren Orten zu Überschwemmungen in Folge von Starkregenereignissen. In beiden Jahren führte dies zu erheblichen Beeinträchtigungen im Alltag der Berliner:innen sowie zu hohen Sachschäden. Eine interdisziplinäre Taskforce des DFG-Graduiertenkollegs NatRiskChange untersuchte (1) die meteorologischen Eigenschaften zweier besonders eindrücklicher Unwetter, sowie (2) die Vulnerabilität der Berliner Bevölkerung gegenüber Starkregen. Eine vergleichende meteorologische Rekonstruktion der Starkregenereignisse von 2017 und 2019 ergab deutliche Unterschiede in der Entstehung und den Überschreitungswahrscheinlichkeiten der beiden Unwetter. So war das Ereignis von 2017 mit einer relativ großen räumlichen Ausdehnung und langer Dauer ein untypisches Starkregenereignis, während es sich bei dem Unwetter von 2019 um ein typisches, kurzzeitiges Starkregenereignis mit ausgeprägter räumlicher Heterogenität handelte. Eine anschließende statistische Analyse zeigte, dass das Ereignis von 2017 für längere Niederschlagsdauern (>=24 h) als großflächiges Extremereignis mit Überschreitungswahrscheinlichkeiten von unter 1 % einzuordnen ist (d.h. Wiederkehrperioden >=100 Jahre). Im Jahr 2019 wurden dagegen ähnliche Überschreitungswahrscheinlichkeiten nur lokal und für kürzere Zeiträume (1-2 h) berechnet. Die Vulnerabilitätsanalyse basiert auf einer von April bis Juni 2020 in Berlin durchgeführten Onlinebefragung. Diese richtete sich an Personen, die bereits von vergangenen Starkregenereignissen betroffen waren und thematisierte das Schadensereignis selbst, daraus entstandene Beeinträchtigungen und Schäden, Risikowahrnehmung sowie Notfall- und Vorsorgemaßnahmen. Die erhobenen Umfragedaten (n=102) beziehen sich vornehmlich auf die Ereignisse von 2017 und 2019 und zeigen, dass die Berliner Bevölkerung sowohl im Alltag (z.B. bei der Beschaffung von Lebensmitteln) als auch im eigenen Haushalt (z.B. durch Überschwemmungsschäden) von den Unwettern beeinträchtigt war. Zudem deuteten die Antworten der Betroffenen auf Möglichkeiten hin, die Vulnerabilität der Gesellschaft gegenüber Starkregen weiter zu reduzieren - etwa durch die Unterstützung besonders betroffener Gruppen (z.B. Pflegende), durch gezielte Informationskampagnen zum Schutz vor Starkregen oder durch die Erhöhung der Reichweite von Unwetterwarnungen. Eine statistische Analyse zur Effektivität privater Notfall- und Vorsorgemaßnahmen auf Grundlage der Umfragedaten bestätigte vorherige Studienergebnisse. So gab es Anhaltspunkte dafür, dass durch das Umsetzen von Vorsorgemaßnahmen wie beispielsweise das Installieren von Rückstauklappen, Barriere-Systemen oder Pumpen Starkregenschäden reduziert werden können. Die Ergebnisse dieses Berichts unterstreichen die Notwendigkeit für ein integriertes Starkregenrisikomanagment, das die Risikokomponenten Gefährdung, Vulnerabilität und Exposition ganzheitlich und auf mehreren Ebenen (z.B. staatlich, kommunal, privat) betrachtet. N2 - In the summers of 2017 and 2019, the city of Berlin was hit by heavy rainfall leading to urban flooding in several locations. In both years, this led to considerable disruptions of the daily life and high property damage. With focus on two particularly impressive events a taskforce of the DFG Research Training Group NatRiskChange investigated (1) the meteorological characteristics of both events as well as (2) the vulnerability of the Berlin population to heavy rainfall. A comparative meteorological reconstruction of the 2017 and 2019 heavy rainfall events revealed fundamental differences between the two storms. The 2017 event was an atypical heavy rain event, as it was characterized by a relatively large spatial extent and long duration of rainfall, whereas the 2019 storm was a typical short duration heavy rain event with a distinct spatial heterogeneity. Subsequent statistical analysis indicated that the 2017 event should be classified as a large-scale extreme event with exceedance probabilities below 1 % for longer precipitation durations (i.e., return periods of over 100 years). In contrast, in 2019 similar exceedance probabilities were estimated only locally and for shorter durations (1-2 h). The vulnerability analysis of this taskforce was based on an online survey conducted in Berlin between April and June 2020. The survey was aimed at people who had experienced past heavy rainfall events in Berlin, and addressed the resulting impairments and damages, risk perceptions as well as emergency and preparedness measures. The survey data (n=102) primarily referred to the events of 2017 and 2019 and showed that the respondents were affected by the storms both in their daily lives (e.g., when purchasing food) and in their own households (e.g., due to flood damage). In addition, the analysis of the responses pointed to ways to further reduce society's vulnerability to heavy rain. That was, for example, by providing support to particularly affected groups (e.g., caregivers), through targeted information campaigns to protect against heavy rainfall or by improving the range of early warning systems. A statistical analysis of the efficacy of property-level emergency and preparedness measures based on the survey data confirmed previous study findings and provided evidence of reducing heavy rain damage through preparedness. The findings of the taskforce highlight the need for integrated heavy rainfall risk management that considers the risk components of hazard, vulnerability, and exposure holistically and at multiple levels (e.g., state, local and private households). KW - Starkregen KW - Risikomanagement KW - Meteorologische Ereignisanalyse KW - Betroffenenbefragung KW - Berlin KW - Urban Flooding KW - Risk reduction KW - Meteorological Event Analysis KW - Survey of affected residents KW - Berlin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-500560 ER - TY - RPRT A1 - Heidenreich, Anna A1 - Buchner, Martin A1 - Walz, Ariane A1 - Thieken, Annegret Henriette T1 - Das Besucherverhalten unter Hitzebelastung auf der Landesgartenschau Würzburg 2018 BT - Auswertung von Beobachtungen, Wettermessungen und Befragungen N2 - Auf dem Gelände der Landesgartenschau 2018 in Würzburg untersuchte unsere Forschungsgruppe das Anpassungsverhalten der BesucherInnen an Hitze. Ziel war es herauszufinden, wie BesucherInnen von Großveranstaltungen Hitzetage erleben und wie sie sich während unterschiedlicher Wetterbedingungen verhalten. Auf Grundlage der Ergebnisse sollen Empfehlungen zur Förderung individuellen Anpassungsverhaltens bei Hitzebelastung an Veranstalter ausgesprochen werden. An sechs aufeinanderfolgenden Wochenenden im Juli und August führten wir Temperaturmessungen, Verhaltensbeobachtungen und Befragungen unter den BesucherInnen durch. Die Wetterlage an den zwölf Erhebungstagen fiel unterschiedlich aus: Es gab sechs Hitzetage mit Temperaturen über 30 °C, vier warme Sommertage und zwei kühle Regentage. Es ließen sich unterschiedliche Anpassungsmaßnahmen bei den 2741 beobachteten BesucherInnen identifizieren. Hierzu gehören das Tragen von leichter oder kurzer Kleidung und von Kopfbedeckungen, das Mitführen von Getränken oder Schirmen sowie das Aufhalten im Schatten oder Abkühlen in einer Wasserfläche. Dabei fanden sich Unterschiede zwischen den verschiedenen Altersgruppen: Jüngere und Ältere hatten unterschiedliche Präferenzen für einzelne Anpassungsmaßnahmen. So suchten BesucherInnen über 60 Jahren bevorzugt Sitzplätze im Schatten auf, wohingegen sich Kinder zum Abkühlen in Wasserflächen aufhielten. Die Befragung von 306 BesucherInnen ergab, dass Hitzetage als stärker belastend wahrgenommen wurden als Sommer- oder Regentage. Die Mehrheit zeigte zudem ein hohes Bewusstsein für die Thematik Hitzebelastung und Anpassung. Dies spiegelte sich aber nur bei einem Teil der Befragten in ihrem tatsächlich gezeigten Anpassungsmaßnahmen wider. Offizielle Hitzewarnungen des DWD waren den meisten BesucherInnen an Tagen mit ebendiesen nicht bekannt. Auf Grundlage unserer Untersuchungsergebnisse empfehlen wir eine verbesserte Risikokommunikation in Bezug auf Hitze. Veranstalter und Behörden müssen zielgruppenspezifisch denken, wenn es um die Förderung von Hitzeanpassung geht. Angeraten werden u. a. die Schaffung von schattigen Sitzplätzen besonders für ältere BesucherInnen und Wasserstellen, an denen Kinder und Jugendliche spielen und sich erfrischen können. Da sich Hitzewellen in Zukunft häufen werden, dienen die Erkenntnisse dieser Untersuchung der Planung und Durchführung weiterer Open-Air-Veranstaltungen. KW - Hitzebelastung KW - Anpassungsverhalten KW - Open-Air-Veranstaltungen KW - Verhaltensbeobachtung KW - Besucherbefragung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430185 ER - TY - GEN A1 - Thieken, Annegret Henriette A1 - Bubeck, Philip A1 - Riese, Miriam A1 - Ulbrich, Uwe A1 - Kind, Christian A1 - Kaiser, Theresa T1 - Foreword Heavy Rain Risk Management in Germany T2 - Hydrologie und Wasserbewirtschaftung Y1 - 2019 SN - 1439-1783 VL - 63 IS - 4 SP - 192 EP - 192 PB - Bundesanstalt für Gewässerkunde CY - Koblenz ER - TY - RPRT A1 - Thieken, Annegret Henriette A1 - Dierck, Julia A1 - Dunst, Lea A1 - Göpfert, Christian A1 - Heidenreich, Anna A1 - Hetz, Karen A1 - Kern, Julia A1 - Kern, Kristine A1 - Lipp, Torsten A1 - Lippert, Cordine A1 - Meves, Monika A1 - Niederhafner, Stefan A1 - Otto, Antje A1 - Rohrbacher, Christian A1 - Schmidt, Katja A1 - Strate, Leander A1 - Stumpp, Inga A1 - Walz, Ariane T1 - Urbane Resilienz gegenüber extremen Wetterereignissen – Typologien und Transfer von Anpassungsstrategien in kleinen Großstädten und Mittelstädten (ExTrass) BT - Verbundvorhaben „Zukunftsstadt“ (Definitionsprojekt) N2 - Weltweit verursachen Städte etwa 70 % der Treibhausgasemissionen und sind daher wichtige Akteure im Klimaschutz bzw. eine wichtige Zielgruppe von Klimapolitiken. Gleichzeitig sind Städte besonders stark von möglichen Auswirkungen des Klimawandels betroffen: Insbesondere extreme Wetterereignisse wie Hitzewellen oder Starkregenereignisse mit Überflutungen verursachen in Städten hohe Sachschäden und wirken sich negativ auf die Gesundheit der städtischen Bevölkerung aus. Daher verfolgt das Projekt ExTrass das Ziel, die städtische Resilienz gegenüber extremen Wetterereignissen in enger Zusammenarbeit mit Stadtverwaltungen, Strukturen des Bevölkerungsschutzes und der Zivilgesellschaft zu stärken. Im Fokus stehen dabei (kreisfreie) Groß- und Mittelstädte mit 50.000 bis 500.000 Einwohnern, insbesondere die Fallstudienstädte Potsdam, Remscheid und Würzburg. Der vorliegende Bericht beinhaltet die Ergebnisse der 14-monatigen Definitionsphase von ExTrass, in der vor allem die Abstimmung eines Arbeitsprogramms im Mittelpunkt stand, das in einem nachfolgenden dreijährigen Forschungsprojekt (F+E-Phase) gemeinsam von Wissenschaft und Praxispartnern umgesetzt werden soll. Begleitend wurde eine Bestandsaufnahme von Klimaanpassungs- und Klimaschutzstrategien/-plänen in 99 deutschen Groß- und Mittelstädten vorgenommen. Zudem wurden für Potsdam und Würzburg Pfadanalysen für die Klimapolitik durchgeführt. Darin wird insbesondere die Bedeutung von Schlüsselakteuren deutlich. Weiterhin wurden im Rahmen von Stakeholder-Workshops Anpassungsherausforderungen und aktuelle Handlungsbedarfe in den Fallstudienstädten identifiziert und Lösungsansätze erarbeitet, die in der F+E-Phase entwickelt und getestet werden sollen. Neben Maßnahmen auf gesamtstädtischer Ebene und auf Stadtteilebene wurden Maßnahmen angestrebt, die die Risikowahrnehmung, Vorsorge und Selbsthilfefähigkeit von Unternehmen und Bevölkerung stärken können. Daher wurde der Stand der Risikokommunikation in Deutschland für das Projekt aufgearbeitet und eine erste Evaluation von Risikokommunikationswerkzeugen durchgeführt. Der Bericht endet mit einer Kurzfassung des Arbeitsprogramms 2018-2021. N2 - Cities are responsible for around 70 % of the global greenhouse gas emissions and are hence important for climate mitigation; consequently they are a crucial target group of climate policies. At the same time, cities are also severely affected by potential impacts of climate change: extreme weather events such as heat waves or heavy precipitation (pluvial floods) cause high economic losses in urban areas and have adverse effects on the health of the urban population. Therefore, the project ExTrass is aimed at measurably enhancing cities’ resilience against extreme weather events jointly with representatives of urban administrations, disaster assistance and civil society. The project focusses on small metropolises and medium-sized cities with 50,000 to 500,000 inhabitants, in particular on the case study cities of Potsdam, Remscheid and Würzburg. The report summarizes the results of a 14-month definition phase whose main purpose was to define the research program of the successive 3-year-R+D-project, to be implemented jointly by researchers and practitioners. In addition, an inventory of climate change adaptation and climate mitigation strategies and plans of 99 German metropolises and medium-sized cities was created. Moreover, an in-depth analysis of the pathways of climate policies in the cities of Potsdam and Würzburg was conducted, which particularly revealed the relevance of key personalities. Furthermore, current challenges in climate adaptation and needs for action were identified during stakeholder workshops in the case study cities. In addition, possible solutions were discussed which will be implemented and tested during the R+D-project. Besides measures on the city level and on the level of urban districts, options that improve risk awareness, preparedness and coping capacities of enterprises and residents are strived for. Thus the state-of-the-art of risk communication in Germany was reviewed for the project and a first evaluation of a serious game was performed. The report ends with a brief outline of the work program 2018-2021. KW - Klimaanpassung KW - Klimaschutz KW - Pfadanalysen KW - Stadtentwicklung KW - Hitze KW - Starkregen KW - Risikokommunikation KW - Potsdam KW - Würzburg KW - Deutschland KW - Climate Adaptation KW - Climate Mitigation KW - analysis of pathways KW - urban development KW - heat KW - pluvial flooding KW - risk communication KW - city of Potsdam KW - city of Wuerzburg KW - Germany Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-416067 ER - TY - JOUR A1 - Vogel, Kristin A1 - Ozturk, Ugur A1 - Riemer, Adrian A1 - Laudan, Jonas A1 - Sieg, Tobias A1 - Wendi, Dadiyorto A1 - Agarwal, Ankit A1 - Roezer, Viktor A1 - Korup, Oliver A1 - Thieken, Annegret Henriette T1 - Die Sturzflut von Braunsbach am 29. Mai 2016 – Entstehung, Ablauf und Schäden eines „Jahrhundertereignisses“ T1 - The Braunsbach Flashflood of Mai 29th, 2016-Origin, Pathways and Impacts of an Extreme Hydro-Meteorological Event BT - Teil 2: Geomorphologische Prozesse und Schadensanalyse BT - Part 2: Geomorphological Processes and Damage Analysis JF - Hydrologie und Wasserbewirtschaftung N2 - Am Abend des 29. Mai 2016 wurde der Ort Braunsbach im Landkreis Schwäbisch-Hall (Baden-Württemberg) von einer Sturzflut getroffen, bei der mehrere Häuser stark beschädigt oder zerstört wurden. Die Sturzflut war eine der Unwetterfolgen, die im Frühsommer 2016 vom Tiefdruckgebiet Elvira ausgelöst wurden. Der vorliegende Bericht ist der zweite Teil einer Doppelveröffentlichung, welche die Ergebnisse zur Untersuchung des Sturzflutereignisses im Rahmen des DFG-Graduiertenkollegs “Naturgefahren und Risiken in einer sich verändernden Welt” (NatRiskChange, GRK 2043/1) der Universität Potsdam präsentiert. Während Teil 1 die meteorologischen und hydrologischen Ereignisse analysiert, fokussiert Teil 2 auf die geomorphologischen Prozesse und die verursachten Gebäudeschäden. Dazu wurden Ursprung und Ausmaß des während des Sturzflutereignisses mobilisierten und in den Ort getragenen Materials untersucht. Des Weiteren wurden zu 96 betroffenen Gebäuden Daten zum Schadensgrad sowie Prozess- und Gebäudecharakteristika aufgenommen und ausgewertet. Die Untersuchungen zeigen, dass bei der Betrachtung von Hochwassergefährdung die Berücksichtigung von Sturzfluten und ihrer speziellen Charakteristika, wie hoher Feststofftransport und sprunghaftes Verhalten insbesondere in bebautem Gelände, wesentlich ist, um effektive Schutzmaßnahmen ergreifen zu können. N2 - A severe flash flood event hit the town of Braunsbach (Baden-Wurttemberg, Germany) on the evening of May 29, 2016, heavily damaging and destroying several dozens of buildings. It was only one of several disastrous events in Central Europe caused by the low-pressure system "Elvira". The DFG Graduate School "Natural hazards and risks in a changing world" (NatRiskChange, GRK 2043/1) at the University of Potsdam investigated the Braunsbach flash flood as a recent showcase for catastrophic events triggered by severe weather. This contribution is part two of a back-to-back publication on the results of this storm event. While part 1 analyses the meteorological and hydrological situation, part 2 concentrates on the geomorphological aspects and damage to buildings. The study outlines the origin and amount of material that was mobilized and transported into the town by the flood, and analyses damage data collected for 96 affected buildings, describing the degree of impact, underlying processes, and building characteristics. Due to the potentially high sediment load of flash floods and their non-steady and non-uniform flow especially in built-up areas, the damaging processes differ from those of clear water floods. The results underline the need to consider flash floods and their specific behaviour in flood hazard assessments. KW - flash flood KW - flood risk KW - damaging processes KW - debris flow KW - erosion KW - landslides KW - Braunsbach KW - Sturzflut KW - Hochwassergefährdung KW - Schadensprozesse KW - Erosion KW - Hangrutschungen Y1 - 2017 U6 - https://doi.org/10.5675/HyWa_2017,3_2 SN - 1439-1783 VL - 61 IS - 3 SP - 163 EP - 175 PB - Bundesanst. für Gewässerkunde CY - Koblenz ER -