TY - JOUR A1 - Halfar, Jochen A1 - Godinez-Orta, Lucio A1 - Mutti, Maria A1 - Valdez-Holguin, J. E. A1 - Borges, Jose M. T1 - Nutrient and temperature controls on modern carbonate production : an example from the Gulf of California, Mexico N2 - In addition to salinity and temperature, nutrient concentrations in surface waters are known to have a significant impact on distribution of carbonate-producing biota, but have never been quantitatively evaluated against different temperatures along a latitudinal transect. The western coast of the Gulf of California, Mexico, presents a natural laboratory for investigating the influence of oceanographic parameters such as salinity, temperature, and chlorophyll a, a proxy for nutrients, on the composition of a range of modern heterozoan and photozoan carbonate environments along a north-south latitudinal gradient spanning the entire warm-temperate realm (29degreesN-23degreesN). Chlorophyll a, measured in situ at half-hour resolution, is highly variable throughout the year due to short-term upwelling, and increases significantly from the southern to northern Gulf of California. Salinity, in contrast, fluctuates little and remains at an average of 35%. From south to north, carbonate production ranges from oligotrophic- mesotrophic, coral reefdominated shallow-water areas (minimum temperature 18.6 degreesC) through mesotrophic-eutrophic, red algal-dominated, inner-shelf carbonate production in the central gulf (minimum temperature 16 degreesC), and to molluscan-bryozoan, eutrophic inner- to outer-shelf environments (minimum temperature 13.7 degreesC). The Gulf of California data, supplemented with oceanographic and compositional information from a database compiled from a spectrum of modern carbonate systems worldwide, demonstrates the significance of nutrient control in the formation of heterozoan, photozoan, and transitional heterozoan-photozoan carbonate systems and serves as a basis for more accurately interpreting fossil carbonates Y1 - 2004 SN - 0091-7613 ER -