TY - JOUR A1 - Damaraju, Sridevi A1 - Schlede, Stephanie A1 - Eckhardt, Ulrich A1 - Lokstein, Heiko A1 - Grimm, Bernhard T1 - Functions of the water soluble chlorophyll-binding protein in plants JF - Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants N2 - Functional aspects of water soluble chlorophyll-binding protein (WSCP) in plants were investigated during the courses of leaf senescence, chlorophyll biogenesis, stress response and photoprotection. The cDNA sequence encoding WSCP from cauliflower was cloned into a binary vector to facilitate Agrobacterium tumefaciens mediated transformation of Nicotiana tabacum. The resultant transgenic tobacco plants overexpressed the CauWSCP gene under the control of a 35S-promoter. Analyses of protein and pigment contents indicate that WSCP overexpression does not enhance chlorophyll catabolism in vivo, thus rendering a role of WSCP in Chl degradation unlikely. Accumulation of higher levels of protochlorophyllide in WSCP overexpressor plants corroborates a proposed temporary storage and carrier function of WSCP for chlorophyll and late precursors. Although WSCP overexpressor plants did not show significant differences in non-photochemical quenching of chlorophyll fluorescence, they are characterized by significantly lower zeaxanthin accumulation and peroxidase activity at different light intensities, even at high light intensities of 700-900 mu mol photons m(-2) s(-1). These results suggest a photoprotective function of the functional chlorophyll binding-WSCP tetramer by shielding of chlorophylls from molecular oxygen. KW - Chlorophyll metabolism KW - Non-photochemical quenching of chlorophyll fluorescence KW - Photooxidation KW - Photoprotection KW - Photosynthesis Y1 - 2011 U6 - https://doi.org/10.1016/j.jplph.2011.02.007 SN - 0176-1617 VL - 168 IS - 12 SP - 1444 EP - 1451 PB - Elsevier CY - Jena ER -