TY - THES A1 - Flores Castellanos, Junio T1 - Potato tuber (Solanum tuberosum L. cv Desiree) — characterization of starch interacting proteins and maltodextrin metabolism T1 - Kartoffelknolle (Solanum tuberosum L. cv Desiree) - Charakterisierung von Stärke-interagierenden Proteinen und Maltodextrin-Stoffwechsel N2 - Starch is a biopolymer for which, despite its simple composition, understanding the precise mechanism behind its formation and regulation has been challenging. Several approaches and bioanalytical tools can be used to expand the knowledge on the different parts involved in the starch metabolism. In this sense, a comprehensive analysis targeting two of the main groups of molecules involved in this process: proteins, as effectors/regulators of the starch metabolism, and maltodextrins as starch components and degradation products, was conducted in this research work using potato plants (Solanum tuberosum L. cv. Desiree) as model of study. On one side, proteins physically interacting to potato starch were isolated and analyzed through mass spectrometry and western blot for their identification. Alternatively, starch interacting proteins were explored in potato tubers from transgenic plants having antisense inhibition of starch-related enzymes and on tubers stored under variable environmental conditions. Most of the proteins recovered from the starch granules corresponded to previously described proteins having a specific role in the starch metabolic pathway. Another set of proteins could be grouped as protease inhibitors, which were found weakly interacting to starch. Variations in the protein profile obtained after electrophoresis separation became clear when tubers were stored under different temperatures, indicating a differential expression of proteins in response to changing environmental conditions. On the other side, since maltodextrin metabolism is thought to be involved in both starch initiation and degradation, soluble maltooligosaccharide content in potato tubers was analyzed in this work under diverse experimental variables. For this, tuber disc samples from wild type and transgenic lines strongly repressing either the plastidial or cytosolic form of the -glucan phosphorylase and phosphoglucomutase were incubated with glucose, glucose-6-phosphate, and glucose-1-phosphate solutions to evaluate the influence of such enzymes on the conversion of the carbon sources into soluble maltodextrins, in comparison to wild-type samples. Relative maltodextrin amounts analyzed through capillary electrophoresis equipped with laser-induced fluorescence (CE-LIF) revealed that tuber discs could immediately uptake glucose-1-phosphate and use it to produce maltooligosaccharides with a degree of polymerization of up to 30 (DP30), in contrast to transgenic tubers with strong repression of the plastidial glucan phosphorylase. The results obtained from the maltodextrin analysis support previous indications that a specific transporter for glucose-1-phosphate may exist in both the plant cells and the plastidial membranes, thereby allowing a glucose-6-phosphate independent transport. Furthermore, it confirms that the plastidial glucan phosphorylase is responsible for producing longer maltooligosaccharides in the plastids by catalyzing a glucan polymerization reaction when glucose-1-phosphate is available. All these findings contribute to a better understanding of the role of the plastidial glucan phosphorylase as a key enzyme directly involved in the synthesis and degradation of glucans and their implication on starch metabolism. N2 - Stärke ist ein Biopolymer, bei dem es trotz seiner einfachen Zusammensetzung schwierig ist, den genauen Mechanismus seiner Bildung und Regulierung zu verstehen. Verschiedene Ansätze und bioanalytische Instrumente können genutzt werden, um das Wissen über die verschiedenen am Stärkemetabolismus beteiligten Komponenten zu erweitern. In diesem Sinne wurde in dieser Forschungsarbeit eine umfassende Analyse durchgeführt, die auf zwei der wichtigsten Molekülgruppen abzielt, die an diesem Prozess beteiligt sind: Proteine als Effektoren/Regulatoren des Stärkestoffwechsels und Maltodextrine als Stärkebestandteile und Abbauprodukte, wobei Kartoffelpflanzen (Solanum tuberosum L. cv. Desiree) als Untersuchungsmodell dienten. Einerseits wurden Proteine, die physisch mit Kartoffelstärke interagieren, isoliert und mittels Massenspektrometrie und Western Blot analysiert, um sie zu identifizieren. Andererseits wurden die mit Stärke interagierenden Proteine in Kartoffelknollen von transgenen Pflanzen mit Antisense-Hemmung von stärkeverwandten Enzymen und in Knollen, die unter variablen Umweltbedingungen gelagert wurden, untersucht. Die meisten der aus den Stärkekörnchen gewonnenen Proteine entsprachen zuvor beschriebenen Proteinen, die eine spezifische Rolle im Stärkestoffwechselweg spielen. Eine andere Gruppe von Proteinen konnte als Proteaseinhibitoren gruppiert werden, die nur schwach mit der Stärke interagieren. Variationen im Proteinprofil nach der Elektrophorese-Trennung wurden deutlich, wenn die Knollen bei unterschiedlichen Temperaturen gelagert wurden, was auf eine unterschiedliche Expression von Proteinen als Reaktion auf wechselnde Umweltbedingungen hindeutet. Da man davon ausgeht, dass der Maltodextrin-Stoffwechsel sowohl an der Entstehung als auch am Abbau von Stärke beteiligt ist, wurde in dieser Arbeit der Gehalt an löslichen Maltooligosacchariden in Kartoffelknollen unter verschiedenen experimentellen Variablen analysiert. Zu diesem Zweck wurden Knollenscheibenproben von Wildtypen und transgenen Linien, die entweder die plastidiale oder die cytosolische Form der α-Glucanphosphorylase und Phosphoglucomutase stark unterdrücken, mit Glucose-, Glucose-6-Phosphat- und Glucose-1-Phosphat-Lösungen inkubiert, um den Einfluss dieser Enzyme auf die Umwandlung der Kohlenstoffquellen in lösliche Maltodextrine im Vergleich zu Wildtyp-Proben zu bewerten. Relative Maltodextrinmengen, die durch Kapillarelektrophorese mit laserinduzierter Fluoreszenz (CE-LIF) analysiert wurden, zeigten, dass die Knollenscheiben Glukose-1-Phosphat sofort aufnehmen und zur Herstellung von Maltooligosacchariden mit einem Polymerisationsgrad von bis zu 30 (DP30) verwenden konnten, im Gegensatz zu transgenen Knollen mit starker Unterdrückung der plastidialen Glukanphosphorylase. Die Ergebnisse der Maltodextrin-Analyse stützen frühere Hinweise darauf, dass ein spezifischer Transporter für Glucose-1-Phosphat sowohl in den Pflanzenzellen als auch in den plastidialen Membranen vorhanden sein könnte, was einen von Glucose-6-Phosphat unabhängigen Transport ermöglicht. Außerdem wird bestätigt, dass die plastidiale Glucanphosphorylase für die Herstellung längerer Maltooligosaccharide in den Plastiden verantwortlich ist, indem sie eine Glucanpolymerisationsreaktion katalysiert, wenn Glucose-1-Phosphat verfügbar ist. All diese Erkenntnisse tragen zu einem besseren Verständnis der Rolle der plastidialen Glucanphosphorylase als Schlüsselenzym bei, das direkt an der Synthese und dem Abbau von Glucanen und deren Auswirkungen auf den Stärkemetabolismus beteiligt ist. KW - Solanum tuberosum KW - potato KW - maltodextrin KW - starch KW - Stärke KW - Solanum tuberosum KW - Maltodextrin KW - Kartoffel Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-615055 ER - TY - THES A1 - Nitschke, Felix T1 - Phosphorylation of polyglycans, especially glycogen and starch T1 - Phosphorylierung von Polysacchariden, insbesondere bei Glykogen und Stärke N2 - Functional metabolism of storage carbohydrates is vital to plants and animals. The water-soluble glycogen in animal cells and the amylopectin which is the major component of water-insoluble starch granules residing in plant plastids are chemically similar as they consist of α-1,6 branched α-1,4 glucan chains. Synthesis and degradation of transitory starch and of glycogen are accomplished by a set of enzymatic activities that to some extend are also similar in plants and animals. Chain elongation, branching, and debranching are achieved by synthases, branching enzymes, and debranching enzymes, respectively. Similarly, both types of polyglucans contain low amounts of phosphate esters whose abundance varies depending on species and organs. Starch is selectively phosphorylated by at least two dikinases (GWD and PWD) at the glucosyl carbons C6 and C3 and dephosphorylated by the phosphatase SEX4 and SEX4-like enzymes. In Arabidopsis insufficiency in starch phosphorylation or dephosphorylation results in largely impaired starch turnover, starch accumulation, and often in retardation of growth. In humans the progressive neurodegenerative epilepsy, Lafora disease, is the result of a defective enzyme (laforin) that is functional equivalent to the starch phosphatase SEX4 and capable of glycogen dephosphorylation. Patients lacking laforin progressively accumulate unphysiologically structured insoluble glycogen-derived particles (Lafora bodies) in many tissues including brain. Previous results concerning the carbon position of glycogen phosphate are contradictory. Currently it is believed that glycogen is esterified exclusively at the carbon positions C2 and C3 and that the monophosphate esters, being incorporated via a side reaction of glycogen synthase (GS), lack any specific function but are rather an enzymatic error that needs to be corrected. In this study a versatile and highly sensitive enzymatic cycling assay was established that enables quantification of very small G6P amounts in the presence of high concentrations of non-target compounds as present in hydrolysates of polysaccharides, such as starch, glycogen, or cytosolic heteroglycans in plants. Following validation of the G6P determination by analyzing previously characterized starches G6P was quantified in hydrolysates of various glycogen samples and in plant heteroglycans. Interestingly, glucosyl C6 phosphate is present in all glycogen preparations examined, the abundance varying between glycogens of different sources. Additionally, it was shown that carbon C6 is severely hyperphosphorylated in glycogen of Lafora disease mouse model and that laforin is capable of removing C6 phosphate from glycogen. After enrichment of phosphoglucans from amylolytically degraded glycogen, several techniques of two-dimensional NMR were applied that independently proved the existence of 6-phosphoglucosyl residues in glycogen and confirmed the recently described phosphorylation sites C2 and C3. C6 phosphate is neither Lafora disease- nor species-, or organ-specific as it was demonstrated in liver glycogen from laforin-deficient mice and in that of wild type rabbit skeletal muscle. The distribution of 6-phosphoglucosyl residues was analyzed in glycogen molecules and has been found to be uneven. Gradual degradation experiments revealed that C6 phosphate is more abundant in central parts of the glycogen molecules and in molecules possessing longer glucan chains. Glycogen of Lafora disease mice consistently contains a higher proportion of longer chains while most short chains were reduced as compared to wild type. Together with results recently published (Nitschke et al., 2013) the findings of this work completely unhinge the hypothesis of GS-mediated phosphate incorporation as the respective reaction mechanism excludes phosphorylation of this glucosyl carbon, and as it is difficult to explain an uneven distribution of C6 phosphate by a stochastic event. Indeed the results rather point to a specific function of 6-phosphoglucosyl residues in the metabolism of polysaccharides as they are present in starch, glycogen, and, as described in this study, in heteroglycans of Arabidopsis. In the latter the function of phosphate remains unclear but this study provides evidence that in starch and glycogen it is related to branching. Moreover a role of C6 phosphate in the early stages of glycogen synthesis is suggested. By rejecting the current view on glycogen phosphate to be a stochastic biochemical error the results permit a wider view on putative roles of glycogen phosphate and on alternative biochemical ways of glycogen phosphorylation which for many reasons are likely to be mediated by distinct phosphorylating enzymes as it is realized in starch metabolism of plants. Better understanding of the enzymology underlying glycogen phosphorylation implies new possibilities of Lafora disease treatment. N2 - Pflanzen und Tiere speichern Glukose in hochmolekularen Kohlenhydraten, um diese bei Bedarf unter anderem zur Gewinnung von Energie zu nutzen. Amylopectin, der größte Bestandteil des pflanzlichen Speicherkohlenhydrats Stärke, und das tierische Äquivalent Glykogen sind chemisch betrachtet ähnlich, denn sie bestehen aus verzweigten Ketten, deren Bausteine (Glukosylreste) auf identische Weise miteinander verbunden sind. Zudem kommen in beiden Kohlenhydraten kleine aber ähnliche Mengen von Phosphatgruppen vor, die offenbar eine tragende Rolle in Pflanzen und Tieren spielen. Ist in Pflanzen der Einbau oder die Entfernung von Phosphatgruppen in bzw. aus Stärke gestört, so ist oft der gesamte Stärkestoffwechsel beeinträchtigt. Dies zeigt sich unter anderem in der übermäßigen Akkumulation von Stärke und in Wachstumsverzögerungen der gesamten Pflanze. Beim Menschen und anderen Säugern beruht eine schwere Form der Epilepsie (Lafora disease) auf einer Störung des Glykogenstoffwechsels. Sie wird durch das erblich bedingte Fehlen eines Enzyms ausgelöst, das Phosphatgruppen aus dem Glykogen entfernt. Während die Enzyme, die für die Entfernung des Phosphats aus Stärke und Glykogen verantwortlich sind, hohe Ähnlichkeit aufweisen, ist momentan die Ansicht weit verbreitet, dass der Einbau von Phosphat in beide Speicherkohlenhydrate auf höchst unterschiedliche Weise erfolgt. In Pflanzen sind zwei Enzyme bekannt, die Phosphatgruppen an unterschiedlichen Stellen in Glukosylreste einbauen (Kohlenstoffatome 6 und 3). In Tieren soll eine seltene, unvermeidbare und zufällig auftretende Nebenreaktion eines Enzyms, das eigentlich die Ketten des Glykogens verlängert (Glykogen-Synthase), den Einbau von Phosphat bewirken, der somit als unwillkürlich gilt und weithin als „biochemischer Fehler“ (mit fatalen Konsequenzen bei ausbleibender Korrektur) betrachtet wird. In den Glukosylresten des Glykogens sollen ausschließlich die C-Atome 2 und 3 phosphoryliert sein. Die Ergebnisse dieser Arbeit zeigen mittels zweier unabhängiger Methoden, dass Glykogen auch am Glukosyl-Kohlenstoff 6 phosphoryliert ist, der Phosphatposition, die in der Stärke am häufigsten vorkommt. Die Tatsache, dass in dieser Arbeit Phosphat neben Stärke auch erstmals an Glukosylresten von anderen pflanzlichen Kohlenhydraten (wasserlösliche Heteroglykane) nachgewiesen werden konnte, lässt vermuten, dass Phosphorylierung ein generelles Phänomen bei Polysacchariden ist. Des Weiteren wiesen die Ergebnisse darauf hin, dass Phosphat im Glykogen, wie auch in der Stärke, einem bestimmten Zweck dient, der im Zusammenhang mit der Regulation von Kettenverzweigung steht, und dass kein zufälliges biochemisches Ereignis für den Einbau verantwortlich sein kann. Aufgrund der grundlegenden Ähnlichkeiten im Stärke- und Glykogenstoffwechsel, liegt es nahe, dass die Phosphorylierung von Glykogen, ähnlich der von Stärke, ebenfalls durch spezifische Enzyme bewirkt wird. Ein besseres Verständnis der Mechanismen, die der Glykogen-Phosphorylierung zugrunde liegen, kann neue Möglichkeiten der Behandlung von Lafora disease aufzeigen. KW - Stärke KW - Glykogen KW - Phosphorylierung KW - NMR KW - Lafora disease KW - starch KW - glycogen KW - phosphorylation KW - NMR KW - Lafora disease Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-67396 ER - TY - THES A1 - Apriyanto, Ardha T1 - Analysis of starch metabolism in source and sink tissue of plants T1 - Analyse des Stärkestoffwechsels im Source und Sink Gewebe von Pflanzen N2 - Starch is an essential biopolymer produced by plants. Starch can be made inside source tissue (such as leaves) and sink tissue (such as fruits and tubers). Nevertheless, understanding how starch metabolism is regulated in source and sink tissues is fundamental for improving crop production. Despite recent advances in the understanding of starch and its metabolism, there is still a knowledge gap in the source and sink metabolism. Therefore, this study aimed to summarize the state of the art regarding starch structure and metabolism inside plants. In addition, this study aimed to elucidate the regulation of starch metabolism in the source tissue using the leaves of a model organism, Arabidopsis thaliana, and the sink tissue of oil palm (Elaeis guineensis) fruit as a commercial crop. The research regarding the source tissue will focus on the effect of the blockage of starch degradation on the starch parameter in leaves, especially in those of A. thaliana, which lack both disproportionating enzyme 2 (DPE2) and plastidial glucan phosphorylase 1 (PHS1) (dpe2/phs1). The additional elimination of phosphoglucan water dikinase (PWD), starch excess 4 (SEX4), isoamylase 3 (ISA3), and disproportionating enzyme 1 (DPE1) in the dpe2/phs1 mutant background demonstrates the alteration of starch granule number per chloroplast. This study provides insights into the control mechanism of granule number regulation in the chloroplast. The research regarding the sink tissue will emphasize the relationship between starch metabolism and the lipid metabolism pathway in oil palm fruits. This study was conducted to observe the alteration of starch parameters, metabolite abundance, and gene expression during oil palm fruit development with different oil yields. This study shows that starch and sucrose can be used as biomarkers for oil yield in oil palms. In addition, it is revealed that the enzyme isoforms related to starch metabolism influence the oil production in oil palm fruit. Overall, this thesis presents novel information regarding starch metabolism in the source tissue of A.thaliana and the sink tissue of E.guineensis. The results shown in this thesis can be applied to many applications, such as modifying the starch parameter in other plants for specific needs. N2 - Stärke ist ein unverzichtbares Biopolymer, das von Pflanzen sowohl in den Quellgeweben (sources, z. B. Blätter) als auch in den Senkengeweben (sinks, z. B. Früchten und Knollen) gebildet wird. Daher ist ein profundes Wissen über die Regulation des Stärkestoffwechsel in den source und sink Organen von grundlegender Bedeutung für die Verbesserung der Pflanzenproduktion. Trotz der jüngsten Fortschritte im Verständnis des Stärkestoffwechsels bleiben weiterhin viele Fragen über den detaillierten source und sink Metabolismus offen. Ziel dieser Studie war es daher, den aktuellen Forschungsstand über die Struktur und den Stoffwechsel von Stärke in Pflanzen aufzuzeigen. Darüber hinaus sollte in dieser Studie die Regulierung des Stärkestoffwechsels in den Blättern (source) des Modellorganismus Arabidopsis thaliana und in den Ölpalmfrüchten (sink) von Elaeis guineensis, einer Nutzpflanze, aufgeklärt werden. Die Analyse des source Gewebes konzentrierte sich dabei auf die Auswirkungen auf Stärkeparamter wie beispielsweise die Granulazahl durch die Blockierung des Stärkeabbaus in Blättern. Dazu wurde die Arabidopsis Mutante, der das cytosolische Disproportionating Enzym 2 (DPE2) und die plastidiale Glucanphosphorylase 1 (PHS1) fehlen (dpe2/phs1), untersucht. Ebenfalls wurden Dreifachmutanten im Hintergund von dpe2/phs1, denen Starch excess 4 (SEX4), Isoamylase 3, Phosphoglucan-Wasser-Dikinase (PWD) oder das Disproportionating Enzym 1 (DPE1) fehlen, erzeugt. Die Analyse zeigt, dass die Anzahl der Stärkegranula pro Chloroplast nicht festgelegt ist und während des gesamten Wachstums der Pflanze reguliert wird. Diese Daten liefern ein verbessertes Verständnis über die Komplexität der Kontrollmechanismen der Granulazahlregulation in Chloroplasten. Die Untersuchung des sink Gewebes soll die Beziehung zwischen dem Stärkestoffwechsel und dem Lipidstoffwechselweg in Ölpalmenfrüchten verdeutlichen. Diese Studie wurde durchgeführt, um die Veränderung von Stärkeparametern, die Häufigkeit von Metaboliten und die Genexpression während der Entwicklung von Ölpalmenfrüchten mit unterschiedlichen Ölausbeuten zu erforschen. Die Analyse zeigt, dass sowohl Stärke als auch Saccharose als reliable Biomarker für den Ölertrag von Ölpalmen verwendet werden können. Darüber hinaus konnte bewiesen werden, dass die mit dem Stärkestoffwechsel verbundenen Enzymisoformen die Ölproduktion in Ölpalmenfrüchten beeinflussen. Insgesamt liefert diese Arbeit neue Informationen über den Stärkestoffwechsel im source Gewebe von A.thaliana und im sink von E.guineensis. Die in dieser Arbeit gezeigten Ergebnisse können für viele Anwendungen genutzt werden, z. B. für die Veränderung der Stärkeparameter in anderen Pflanzen für spezifische Bedürfnisse. KW - starch KW - oil palm KW - Arabidopsis thaliana KW - source and sink KW - Arabidopsis thaliana KW - Palmöl KW - Source und Sink KW - Stärke Y1 - 2023 ER -