TY - JOUR A1 - Durgud, Meriem A1 - Gupta, Saurabh A1 - Ivanov, Ivan A1 - Omidbakhshfard, Mohammad Amin A1 - Benina, Maria A1 - Alseekh, Saleh A1 - Staykov, Nikola A1 - Hauenstein, Mareike A1 - Dijkwel, Paul P. A1 - Hortensteiner, Stefan A1 - Toneva, Valentina A1 - Brotman, Yariv A1 - Fernie, Alisdair R. A1 - Müller-Röber, Bernd A1 - Gechev, Tsanko S. T1 - Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress-and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast-and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis-and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness. Y1 - 2018 U6 - https://doi.org/10.1104/pp.18.00055 SN - 0032-0889 SN - 1532-2548 VL - 177 IS - 3 SP - 1319 EP - 1338 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Ivanov, Ivan A1 - Benina, Maria A1 - Petrov, Veselin A1 - Gechev, Tsanko S. A1 - Toneva, Valentina T1 - Metabolic responses of gloxinia perennis to dehydration and rehydration JF - COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES N2 - Gloxinia perennis is a species from the family Gesneriaceae with little known physiology, particularly in respect to responses to dehydration. G. perennis survived water deprivation for a month and then quickly recovered upon rehydration. The slow loss of water was in contrast with the quick dehydration of other Gesnerian species - Boea hygrometrica, Ramonda serbica, and Haber lea rhodopensis. Furthermore, a significant difference between older and younger leaves of G. perennis was observed. While the relative water content in the early stages of water deprivation was reduced to 65% in the old leaves, it was not or slightly reduced in the young ones, implying a mechanism that protects specifically the younger leaves from dehydration. Water deprivation induced accumulation of gama-aminobutyric acid and sugars like sucrose and raffinose, but decreased the levels of amino acids such as glycine, leucine, and isoleucine. The levels of these amino acids recovered after rehydration and in some cases like glycine and isoleucine were even higher in rehydrated leaves compared with unstressed controls. We conclude that G.perennis can survive prolonged drought stress but its responses to dehydration are different from the resurrection species from Gesneriaceae. All this makes G. perennis a good model that can be used for comparative genomics and metabolomics of Gesneriads exposed to desiccation. KW - Gloxinia perennis KW - drought stress KW - metabolome analysis Y1 - 2014 SN - 1310-1331 VL - 67 IS - 12 SP - 1657 EP - 1662 PB - Publ. House of the Bulgarian Acad. of Sciences CY - Sofia ER - TY - JOUR A1 - Benina, Maria A1 - Obata, Toshihiro A1 - Mehterov, Nikolay A1 - Ivanov, Ivan A1 - Petrov, Veselin A1 - Toneva, Valentina A1 - Fernie, Alisdair R. A1 - Gechev, Tsanko S. T1 - Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature JF - Frontiers in plant science N2 - Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4 degrees C) and subsequent return to optimal temperatures (21 degrees C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21 degrees C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species. KW - Arabidopsis thaliana KW - Haberlea rhodopensis KW - low temperature stress KW - metabolite profiling KW - Thellungiella halophila Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00499 SN - 1664-462X VL - 4 IS - 1 PB - Frontiers Research Foundation CY - Lausanne ER -