TY - JOUR A1 - Coelho, Catarina A1 - Mahro, Martin A1 - Trincao, Jose A1 - Carvalho, Alexandra T. P. A1 - Ramos, Maria Joao A1 - Terao, Mineko A1 - Garattini, Enrico A1 - Leimkühler, Silke A1 - Romao, Maria Joao T1 - The first mammalian aldehyde oxidase crystal structure insights into substrate specificity JF - The journal of biological chemistry N2 - Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 angstrom. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. Y1 - 2012 U6 - https://doi.org/10.1074/jbc.M112.390419 SN - 0021-9258 VL - 287 IS - 48 SP - 40690 EP - 40702 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER -