TY - JOUR A1 - Arnold, Anne A1 - Nikoloski, Zoran T1 - In search for an accurate model of the photosynthetic carbon metabolism JF - Mathematics and computers in simulation : transactions of IMACS N2 - The photosynthetic carbon metabolism, including the Calvin-Benson cycle, is the primary pathway in C-3-plants, producing starch and sucrose from CO2. Understanding the interplay between regulation and efficiency of this pathway requires the development of mathematical models which would explain the observed dynamics of metabolic transformations. Here, we address this question by casting the existing models of Calvin-Benson cycle and the end-product processes into an analysis framework which not only facilitates the comparison of the different models, but also allows for their ranking with respect to chosen criteria, including stability, sensitivity, robustness and/or compliance with experimental data. The importance of the photosynthetic carbon metabolism for the increase of plant biomass has resulted in many models with various levels of detail. We provide the largest compendium of 15 existing, well-investigated models together with a comprehensive classification as well as a ranking framework to determine the best-performing models for metabolic engineering and planning of in silica experiments. The classification can be additionally used, based on the model structure, as a tool to identify the models which match best the experimental design. The provided ranking is just one alternative to score models and, by changing the weighting factor, this framework also could be applied for selection of other criteria of interest. KW - Calvin-Benson cycle KW - Carbon metabolism KW - Model ranking KW - Differential and algebraic equations Y1 - 2014 U6 - https://doi.org/10.1016/j.matcom.2012.03.011 SN - 0378-4754 SN - 1872-7166 VL - 96 SP - 171 EP - 194 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Feher, Kristen A1 - Lisec, Jan A1 - Roemisch-Margl, Lilla A1 - Selbig, Joachim A1 - Gierl, Alfons A1 - Piepho, Hans-Peter A1 - Nikoloski, Zoran A1 - Willmitzer, Lothar T1 - Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach JF - PLoS one Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0085435 SN - 1932-6203 VL - 9 IS - 1 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Klie, Sebastian A1 - Nikoloski, Zoran A1 - Selbig, Joachim T1 - Biological cluster evaluation for gene function prediction JF - Journal of computational biology N2 - Recent advances in high-throughput omics techniques render it possible to decode the function of genes by using the "guilt-by-association" principle on biologically meaningful clusters of gene expression data. However, the existing frameworks for biological evaluation of gene clusters are hindered by two bottleneck issues: (1) the choice for the number of clusters, and (2) the external measures which do not take in consideration the structure of the analyzed data and the ontology of the existing biological knowledge. Here, we address the identified bottlenecks by developing a novel framework that allows not only for biological evaluation of gene expression clusters based on existing structured knowledge, but also for prediction of putative gene functions. The proposed framework facilitates propagation of statistical significance at each of the following steps: (1) estimating the number of clusters, (2) evaluating the clusters in terms of novel external structural measures, (3) selecting an optimal clustering algorithm, and (4) predicting gene functions. The framework also includes a method for evaluation of gene clusters based on the structure of the employed ontology. Moreover, our method for obtaining a probabilistic range for the number of clusters is demonstrated valid on synthetic data and available gene expression profiles from Saccharomyces cerevisiae. Finally, we propose a network-based approach for gene function prediction which relies on the clustering of optimal score and the employed ontology. Our approach effectively predicts gene function on the Saccharomyces cerevisiae data set and is also employed to obtain putative gene functions for an Arabidopsis thaliana data set. KW - algorithms KW - biochemical networks KW - combinatorics KW - computational molecular biology KW - databases KW - functional genomics KW - gene expression KW - NP-completeness Y1 - 2014 U6 - https://doi.org/10.1089/cmb.2009.0129 SN - 1066-5277 SN - 1557-8666 VL - 21 IS - 6 SP - 428 EP - 445 PB - Liebert CY - New Rochelle ER - TY - JOUR A1 - Mettler, Tabea A1 - Mühlhaus, Timo A1 - Hemme, Dorothea A1 - Schöttler, Mark Aurel A1 - Rupprecht, Jens A1 - Idoine, Adam A1 - Veyel, Daniel A1 - Pal, Sunil Kumar A1 - Yaneva-Roder, Liliya A1 - Winck, Flavia Vischi A1 - Sommer, Frederik A1 - Vosloh, Daniel A1 - Seiwert, Bettina A1 - Erban, Alexander A1 - Burgos, Asdrubal A1 - Arvidsson, Samuel Janne A1 - Schoenfelder, Stephanie A1 - Arnold, Anne A1 - Guenther, Manuela A1 - Krause, Ursula A1 - Lohse, Marc A1 - Kopka, Joachim A1 - Nikoloski, Zoran A1 - Müller-Röber, Bernd A1 - Willmitzer, Lothar A1 - Bock, Ralph A1 - Schroda, Michael A1 - Stitt, Mark T1 - Systems analysis of the response of photosynthesis, metabolism, and growth to an increase in irradiance in the photosynthetic model organism chlamydomonas reinhardtii JF - The plant cell N2 - We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R-2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance. Y1 - 2014 U6 - https://doi.org/10.1105/tpc.114.124537 SN - 1040-4651 SN - 1532-298X VL - 26 IS - 6 SP - 2310 EP - 2350 PB - American Society of Plant Physiologists CY - Rockville ER -