TY - JOUR A1 - Apelt, Federico A1 - Breuer, David A1 - Nikoloski, Zoran A1 - Stitt, Mark A1 - Kragler, Friedrich T1 - Phytotyping(4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth JF - The plant journal N2 - Integrative studies of plant growth require spatially and temporally resolved information from high-throughput imaging systems. However, analysis and interpretation of conventional two-dimensional images is complicated by the three-dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping(4D) uses a light-field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three-dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping(4D) was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping(4D), we compare diurnal changes in Arabidopsis thaliana wild-type Col-0 and the starchless pgm mutant. Compared to Col-0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light-field camera systems as a tool to accurately measure morphological and growth-related features in plants. Significance Statement Phytotyping(4D) is a non-invasive and accurate imaging system that combines a 3D light-field camera with an automated pipeline, which provides validated measurements of growth, movement, and other morphological features at the rosette and single-leaf level. In a case study in which we investigated the link between starch and growth, we demonstrated that Phytotyping(4D) is a key step towards bridging the gap between phenotypic observations and the rich genetic and metabolic knowledge. KW - plant growth KW - hyponasty KW - 3D imaging KW - light-field camera KW - Arabidopsis thaliana KW - pgm KW - technical advance Y1 - 2015 U6 - https://doi.org/10.1111/tpj.12833 SN - 0960-7412 SN - 1365-313X VL - 82 IS - 4 SP - 693 EP - 706 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Hansen, Bjoern Oest A1 - Meyer, Etienne H. A1 - Ferrari, Camilla A1 - Vaid, Neha A1 - Movahedi, Sara A1 - Vandepoele, Klaas A1 - Nikoloski, Zoran A1 - Mutwil, Marek T1 - Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana JF - New phytologist : international journal of plant science N2 - Recent advances in gene function prediction rely on ensemble approaches that integrate results from multiple inference methods to produce superior predictions. Yet, these developments remain largely unexplored in plants. We have explored and compared two methods to integrate 10 gene co-function networks for Arabidopsis thaliana and demonstrate how the integration of these networks produces more accurate gene function predictions for a larger fraction of genes with unknown function. These predictions were used to identify genes involved in mitochondrial complex I formation, and for five of them, we confirmed the predictions experimentally. The ensemble predictions are provided as a user-friendly online database, EnsembleNet. The methods presented here demonstrate that ensemble gene function prediction is a powerful method to boost prediction performance, whereas the EnsembleNet database provides a cutting-edge community tool to guide experimentalists. KW - Arabidopsis thaliana KW - co-function network KW - complex I KW - ensemble prediction KW - gene function prediction Y1 - 2017 U6 - https://doi.org/10.1111/nph.14921 SN - 0028-646X SN - 1469-8137 VL - 217 IS - 4 SP - 1521 EP - 1534 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Küken, Anika A1 - Gennermann, Kristin A1 - Nikoloski, Zoran T1 - Characterization of maximal enzyme catalytic rates in central metabolism of Arabidopsis thaliana JF - The plant journal N2 - Availability of plant-specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measuredin vitro, often under non-physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximalin vivocatalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome-b6f complex, ATP-citrate synthase, sucrose-phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition-specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements fromArabidopsis thalianarosette with and fluxes through canonical pathways in a constraint-based model of leaf metabolism. In comparison to findings inEscherichia coli, we demonstrate weaker concordance between the plant-specificin vitroandin vivoenzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximalin vivocatalytic rates, and available quantitative metabolomics data are below reportedKMvalues and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome-wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation. KW - Arabidopsis thaliana KW - constraint-based modeling KW - enzyme catalytic rates KW - kinetic parameter KW - metabolic network KW - turnover number Y1 - 2020 U6 - https://doi.org/10.1111/tpj.14890 SN - 0960-7412 SN - 1365-313X VL - 103 IS - 6 SP - 2168 EP - 2177 PB - Wiley CY - Oxford ER - TY - JOUR A1 - Pandey, Prashant K. A1 - Yu, Jing A1 - Omranian, Nooshin A1 - Alseekh, Saleh A1 - Vaid, Neha A1 - Fernie, Alisdair R. A1 - Nikoloski, Zoran A1 - Laitinen, Roosa A. E. T1 - Plasticity in metabolism underpins local responses to nitrogen in Arabidopsis thaliana populations JF - Plant Direct N2 - Nitrogen (N) is central for plant growth, and metabolic plasticity can provide a strategy to respond to changing N availability. We showed that two local A. thaliana populations exhibited differential plasticity in the compounds of photorespiratory and starch degradation pathways in response to three N conditions. Association of metabolite levels with growth-related and fitness traits indicated that controlled plasticity in these pathways could contribute to local adaptation and play a role in plant evolution. KW - Arabidopsis thaliana KW - natural variation KW - nitrogen availability KW - photorespiration KW - plasticity Y1 - 2019 U6 - https://doi.org/10.1002/pld3.186 SN - 2475-4455 VL - 3 IS - 11 PB - John Wiley & sonst LTD CY - Chichester ER -