TY - JOUR A1 - Meyer, Rhonda Christiane A1 - Kusterer, Barbara A1 - Lisec, Jan A1 - Steinfath, Matthias A1 - Becher, Martina A1 - Scharr, Hanno A1 - Melchinger, Albrecht E. A1 - Selbig, Joachim A1 - Schurr, Ulrich A1 - Willmitzer, Lothar A1 - Altmann, Thomas T1 - QTL analysis of early stage heterosis for biomass in Arabidopsis JF - Theoretical and applied genetics N2 - The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F 1 hybrid exhibited 44% heterosis for biomass. Mid-parent heterosis in the RILs ranged from −31 to 99% for dry weight and from −58 to 143% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross. KW - Quantitative Trait Locus KW - recombinant inbred line KW - Quantitative Trait Locus analysis KW - dominance effect KW - recombinant inbred line population Y1 - 2009 U6 - https://doi.org/10.1007/s00122-009-1074-6 SN - 1432-2242 SN - 0040-5752 VL - 129 IS - 2 SP - 227 EP - 237 PB - Springer Nature CY - Berlin ER - TY - GEN A1 - Meyer, Rhonda Christiane A1 - Kusterer, Barbara A1 - Lisec, Jan A1 - Steinfath, Matthias A1 - Becher, Martina A1 - Scharr, Hanno A1 - Melchinger, Albrecht E. A1 - Selbig, Joachim A1 - Schurr, Ulrich A1 - Willmitzer, Lothar A1 - Altmann, Thomas T1 - QTL analysis of early stage heterosis for biomass in Arabidopsis T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F 1 hybrid exhibited 44% heterosis for biomass. Mid-parent heterosis in the RILs ranged from −31 to 99% for dry weight and from −58 to 143% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1330 KW - Quantitative Trait Locus KW - recombinant inbred line KW - Quantitative Trait Locus analysis KW - dominance effect KW - recombinant inbred line population Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431272 SN - 1866-8372 IS - 1330 ER -