TY - GEN A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1258 KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558866 SN - 1866-8372 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations JF - Ecology And Evolution N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - https://doi.org/10.1002/ece3.8521 SN - 2045-7758 SP - 1 EP - 15 PB - John Wiley & Sons, Inc. CY - Vereinigte Staaten ER - TY - JOUR A1 - Eccard, Jana A1 - Liesenjohann, Thilo T1 - The importance of predation risk and missed opportunity costs for context-dependent foraging patterns JF - PLoS one N2 - Correct assessment of risks and costs of foraging is vital for the fitness of foragers. Foragers should avoid predation risk and balance missed opportunities. In risk-heterogeneous landscapes animals prefer safer locations over riskier, constituting a landscape of fear. Risk-uniform landscapes do not offer this choice, all locations are equally risky. Here we investigate the effects of predation risk in patches, travelling risk between patches, and missed social opportunities on foraging decisions in risk-uniform and risk-heterogeous landscapes. We investigated patch leaving decisions of 20 common voles (M. arvalis) in three experimental landscapes: safe risk-uniform, risky risk-uniform and risk-heterogeneous. We varied both the predation risk level and the predation risk distribution between two patches experimentally and in steps, assuming that our manipulation consequently yield different distributions and levels of risk while foraging, risk while travelling, and costs of missed, social opportunities (MSOCs). We measured mean GUDs (giving-up density of food left in the patch) for both patches as a measure of foraging gain, and delta GUD, the differences among patches, as a measure of the spatial distribution of foraging effort over a period of six hours. Distribution of foraging effort was most even in the safe risk-uniform landscapes and least even in the risk-heterogeneous landscape, with risky risk-uniform landscapes in between. Foraging gain was higher in the safe than in the two riskier landscapes (both uniform and heterogeneous). Results supported predictions for the effects of risk in foraging patches and while travelling between patches, however predictions for the effects of missed social opportunities were not met in this short term experiment. Thus, both travelling and foraging risk contribute to distinct patterns observable high risk, risk-uniform landscapes. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0094107 SN - 1932-6203 VL - 9 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Eccard, Jana A1 - Liesenjohann, Thilo A1 - Dammhahn, Melanie T1 - Among-individual differences in foraging modulate resource exploitation under perceived predation risk JF - Oecologia N2 - Foraging is risky and involves balancing the benefits of resource acquisition with costs of predation. Optimal foraging theory predicts where, when and how long to forage in a given spatiotemporal distribution of risks and resources. However, significant variation in foraging behaviour and resource exploitation remain unexplained. Using single foragers in artificial landscapes of perceived risks and resources with diminishing returns, we aimed to test whether foraging behaviour and resource exploitation are adjusted to risk level, vary with risk during different components of foraging, and (co)vary among individuals. We quantified foraging behaviour and resource exploitation for 21 common voles (Microtus arvalis). By manipulating ground cover, we created simple landscapes of two food patches varying in perceived risk during feeding in a patch and/or while travelling between patches. Foraging of individuals was variable and adjusted to risk level and type. High risk during feeding reduced feeding duration and food consumption more strongly than risk while travelling. Risk during travelling modified the risk effects of feeding for changes between patches and resulting evenness of resource exploitation. Across risk conditions individuals differed consistently in when and how long they exploited resources and exposed themselves to risk. These among-individual differences in foraging behaviour were associated with consistent patterns of resource exploitation. Thus, different strategies in foraging-under-risk ultimately lead to unequal payoffs and might affect lower trophic levels in food webs. Inter-individual differences in foraging behaviour, i.e. foraging personalities, are an integral part of foraging behaviour and need to be fully integrated into optimal foraging theory. KW - animal personality KW - giving-up density KW - intra-specific trait variation KW - landscape of fear KW - optimal foraging KW - predation risk KW - resource KW - exploitation Y1 - 2020 U6 - https://doi.org/10.1007/s00442-020-04773-y SN - 0029-8549 SN - 1432-1939 VL - 194 IS - 4 SP - 621 EP - 634 PB - Springer CY - Berlin ER - TY - JOUR A1 - Krause, E. Tobias A1 - Liesenjohann, Thilo T1 - Predation pressure and food abundance during early life alter risk-taking behaviour and growth of guppies (Poecilia reticulata) JF - Behaviour : an international journal of behavioural biology N2 - The trade-off between predation risk and the need to feed is one of the major constraints animals have to cope with. Virtually all animals have a higher risk of being preyed upon when being active (e.g., searching for food or mating partners), compared with being inactive (e.g., staying at their burrows, nests, etc.). Yet, staying safe leads to a higher risk of starvation and may reduce reproductive success and body growth. Hence selection on behaviour optimizing the search, handling and digestion of food while avoiding the risk of predation is strong and should lead to strategies maximising survival chances and inclusive fitness. These facts call for integrative studies manipulating both, abundance of food and predation risk in a factorial set up, analysing the effects of both factors on behaviour and physiological parameters. We present results of a 2 x 2 factorial experiment, manipulating risk of predation and food abundance in guppies. We found that the two factors have an additive effect on body growth, but that predation risk by a pike cichlid is the main factor affecting the expression of behavioural strategies in guppies. Low food availability and high predation risk led to lower body growth. High predation risk affected swimming depth and risk sensitivity of guppies and might represent adaptive behavioural changes to the environmental context experienced in early life. Our study shows that integrative studies, analysing multiple interdependent and interconnected factors in the wild and in the lab are needed to further understand animal behaviour and development. KW - predation KW - food abundance KW - nutritional stress KW - risk taking KW - early development KW - developmental stress KW - guppy KW - Poecilia reticulata Y1 - 2012 U6 - https://doi.org/10.1163/156853912X623748 SN - 0005-7959 VL - 149 IS - 1 SP - 1 EP - 14 PB - Brill CY - Leiden ER - TY - JOUR A1 - Liesenjohann, Monique A1 - Liesenjohann, Thilo A1 - Palme, Rupert A1 - Eccard, Jana T1 - Differential behavioural and endocrine responses of common voles (Microtus arvalis) to nest predators and resource competitors JF - BMC ecology N2 - Background: Adaptive behavioural strategies promoting co-occurrence of competing species are known to result from a sympatric evolutionary past. Strategies should be different for indirect resource competition (exploitation, e.g., foraging and avoidance behaviour) than for direct interspecific interference (e.g., aggression, vigilance, and nest guarding). We studied the effects of resource competition and nest predation in sympatric small mammal species using semi-fossorial voles and shrews, which prey on vole offspring during their sensitive nestling phase. Experiments were conducted in caged outdoor enclosures. Focus common vole mothers (Microtus arvalis) were either caged with a greater white-toothed shrew (Crocidura russula) as a potential nest predator, with an herbivorous field vole (Microtus agrestis) as a heterospecific resource competitor, or with a conspecific resource competitor. Results: We studied behavioural adaptations of vole mothers during pregnancy, parturition, and early lactation, specifically modifications of the burrow architecture and activity at burrow entrances. Further, we measured pre- and postpartum faecal corticosterone metabolites (FCMs) of mothers to test for elevated stress hormone levels. Only in the presence of the nest predator were prepartum FCMs elevated, but we found no loss of vole nestlings and no differences in nestling body weight in the presence of the nest predator or the heterospecific resource competitor. Although the presence of both the shrew and the field vole induced prepartum modifications to the burrow architecture, only nest predators caused an increase in vigilance time at burrow entrances during the sensitive nestling phase. Conclusion: Voles displayed an adequate behavioural response for both resource competitors and nest predators. They modified burrow architecture to improve nest guarding and increased their vigilance at burrow entrances to enhance offspring survival chances. Our study revealed differential behavioural adaptations to resource competitors and nest predators. KW - Behavioural adaptations KW - Small mammals KW - Interspecific interactions KW - Nest predation KW - Stress response KW - Faecal corticosterone metabolites KW - Burrow system KW - Shrews KW - Voles Y1 - 2013 U6 - https://doi.org/10.1186/1472-6785-13-33 SN - 1472-6785 VL - 13 IS - 17 PB - BioMed Central CY - London ER - TY - GEN A1 - Liesenjohann, Monique A1 - Liesenjohann, Thilo A1 - Palme, Rupert A1 - Eccard, Jana T1 - Differential behavioural and endocrine responses of common voles (Microtus arvalis) to nest predators and resource competitors N2 - Background: Adaptive behavioural strategies promoting co-occurrence of competing species are known to result from a sympatric evolutionary past. Strategies should be different for indirect resource competition (exploitation, e.g., foraging and avoidance behaviour) than for direct interspecific interference (e.g., aggression, vigilance, and nest guarding). We studied the effects of resource competition and nest predation in sympatric small mammal species using semi-fossorial voles and shrews, which prey on vole offspring during their sensitive nestling phase. Experiments were conducted in caged outdoor enclosures. Focus common vole mothers (Microtus arvalis) were either caged with a greater white-toothed shrew (Crocidura russula) as a potential nest predator, with an herbivorous field vole (Microtus agrestis) as a heterospecific resource competitor, or with a conspecific resource competitor. Results: We studied behavioural adaptations of vole mothers during pregnancy, parturition, and early lactation, specifically modifications of the burrow architecture and activity at burrow entrances. Further, we measured pre- and postpartum faecal corticosterone metabolites (FCMs) of mothers to test for elevated stress hormone levels. Only in the presence of the nest predator were prepartum FCMs elevated, but we found no loss of vole nestlings and no differences in nestling body weight in the presence of the nest predator or the heterospecific resource competitor. Although the presence of both the shrew and the field vole induced prepartum modifications to the burrow architecture, only nest predators caused an increase in vigilance time at burrow entrances during the sensitive nestling phase. Conclusion: Voles displayed an adequate behavioural response for both resource competitors and nest predators. They modified burrow architecture to improve nest guarding and increased their vigilance at burrow entrances to enhance offspring survival chances. Our study revealed differential behavioural adaptations to resource competitors and nest predators. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 402 KW - behavioural adaptations KW - small mammals KW - interspecific interactions KW - nest predation KW - stress response KW - faecal corticosterone metabolites KW - burrow system KW - shrews KW - voles Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401184 ER - TY - JOUR A1 - Liesenjohann, Monique A1 - Liesenjohann, Thilo A1 - Trebaticka, Lenka A1 - Haapakoski, Marko A1 - Sundell, Janne A1 - Ylonen, Hannu A1 - Eccard, Jana T1 - From interference to predation type and effects of direct interspecific interactions of small mammals JF - Behavioral ecology and sociobiology N2 - Indirect exploitative competition, direct interference and predation are important interactions affecting species coexistence. These interaction types may overlap and vary with the season and life-history state of individuals. We studied effects of competition and potential nest predation by common shrews (Sorex araneus) on lactating bank voles (Myodes glareolus) in two seasons. The species coexist and may interact aggressively. Additionally, shrews can prey on nestling voles. We studied bank vole mothers' spatial and temporal adaptations to shrew presence during summer and autumn. Further, we focused on fitness costs, e.g. decreased offspring survival, which bank voles may experience in the presence of shrews. In summer, interference with shrews decreased the voles' home ranges and they spent more time outside the nest, but there were no effects on offspring survival. In autumn, we found decreased offspring survival in enclosures with shrews, potentially due to nest predation by shrews or by increased competition between species. Our results indicate a shift between interaction types depending on seasonal constraints. In summer, voles and shrews seem to interact mainly by interference, whereas resource competition and/or nest predation by shrews gain importance in autumn. Different food availability, changing environmental conditions and the energetic constraints in voles and shrews later in the year may be the reasons for the varying combinations of interaction types and their increasing effects on the inclusive fitness of bank voles. Our study provides evidence for the need of studies combining life history with behavioural measurements and seasonal constraints. KW - Nest predation KW - Interspecific interaction KW - Coexistence KW - Interference KW - Small mammals KW - Voles KW - Shrews Y1 - 2011 U6 - https://doi.org/10.1007/s00265-011-1217-z SN - 0340-5443 VL - 65 IS - 11 SP - 2079 EP - 2089 PB - Springer CY - New York ER - TY - THES A1 - Liesenjohann, Thilo T1 - Foraging in space and time T1 - Nahrungssuche unter variablen zeitlichen und räumlichen Bedingungen N2 - All animals are adapted to the environmental conditions of the habitat they chose to live in. It was the aim of this PhD-project, to show which behavioral strategies are expressed as mechanisms to cope with the constraints, which contribute to the natural selection pressure acting on individuals. For this purpose, small mammals were exposed to different levels and types of predation risk while actively foraging. Individuals were either exposed to different predator types (airborne or ground) or combinations of both, or to indirect predators (nest predators). Risk was assumed to be distributed homogeneously, so changing the habitat or temporal adaptations where not regarded as potential options. Results show that wild-caught voles have strategic answers to this homogeneously distributed risk, which is perceived by tactile, olfactory or acoustic cues. Thus, they do not have to know an absolut quality (e.g., in terms of food provisioning and risk levels of all possible habitats), but they can adapt their behavior to the actual circumstances. Deriving risk uniform levels from cues and adjusting activity levels to the perceived risk is an option to deal with predators of the same size or with unforeseeable attack rates. Experiments showed that as long as there are no safe places or times, it is best to reduce activity and behave as inconspicuous as possible as long as the costs of missed opportunities do not exceed the benefits of a higher survival probability. Test showed that these costs apparently grow faster for males than for females, especially in times of inactivity. This is supported by strong predatory pressure on the most active groups of rodents (young males, sexually active or dispersers) leading to extremely female-biased operative sex ratios in natural populations. Other groups of animals, those with parental duties such as nest guarding, for example, have to deal with the actual risk in their habitat as well. Strategies to indirect predation pressure were tested by using bank vole mothers, confronted with a nest predator that posed no actual threat to themselves but to their young (Sorex araneus). They reduced travelling and concentrated their effort in the presence of shrews, independent of the different nutritional provisioning of food by varying resource levels due to the different seasons. Additionally, they exhibited nest-guarding strategies by not foraging in the vicinity of the nest site in order to reduce conspicuous scent marks. The repetition of the experiment in summer and autumn showed that changing environmental constraints can have a severe impact on results of outdoor studies. In our case, changing resource levels changed the type of interaction between the two species. The experiments show that it is important to analyze decision making and optimality models on an individual level, and, when that is not possible (maybe because of the constraints of field work), groups of animals should be classified by using the least common denominator that can be identified (such as sex, age, origin or kinship). This will control for the effects of the sex or stage of life history or the individual´s reproductive and nutritional status on decision making and will narrow the wide behavioral variability associated with the complex term of optimality. N2 - Das Verhalten von Tieren ist das Ergebnis eines kontinuierlichen Anpassungsprozesses im Laufe der Evolution einer Art und damit der Veränderung der Umgebung in der es lebt und der Interaktion mit anderen Arten. Dies wird besonders deutlich im Verhalten von potentiellen Beutetieren, ihre Strategien beinhalten meist ein möglichst unauffälliges Verhalten im Zusammenspiel mit reduzierter Bewegung und möglichst guter Tarnung. Dementgegen stehen essentielle Bedürfnisse, wie zum Beispiel die Nahrungssuche, die Verteidigung von Ressourcen (zum Beispiel Territorien, Futterstellen) und die Suche nach Paarungspartnern. Beutetiere leben also in einem Spannungsfeld indem sie Ihr Verhalten optimieren müssen. Hierbei stehen die Ernährung, erfolgreiche Verpaarung und andere Chancen auf der einen Seite, die Vermeidung von Begegnungen mit Prädatoren auf der anderen. Vor allem Kleinsäuger sind häufig als Beutetiere mit einer Vielzahl von Prädatoren aus der Luft und auf dem Boden konfrontiert. Sie müssen für die verschiedenen Bedrohungen adaptive Verhaltensanpassungen bereit haben und in der Lage sein, auf die optischen, olfaktorischen oder akustischen Signale, die die Gefahr durch Prädatoren anzeigen, mit plastischen Verhaltensmustern zu reagieren. Die vorliegende Dissertation beschäftigt sich mit bisher als Konstanten behandelten Faktoren und untersucht anhand von Verhaltensexperimenten mit wilden Wühlmäusen (Microtus arvalis) folgende Fragestellungen: - Wie verhalten sich Tiere, die einer homogenen Risikoverteilung ausgesetzt sind, zum Beispiel weil ihr Prädator genauso gross ist wie sie, im gleichen Habitat lebt und es keinen sicheren Ort gibt? - Mit welchen Anpassungen reagieren Tiere, wenn sie gleichzeitig verschiedenen Prädatoren ausgesetzt sind? - Wie unterscheiden sich die Nahrungssuchstrategien von Männchen und Weibchen? - Wie verhalten sich laktierende Weibchen, die einer permanenten, indirekten Gefahr, z.B. durch einen Nestprädator ausgesetzt sind? Die Ergebnisse der verschiedenen Versuche in künstlichen Arenen und Aussengehegen zeigen, dass die Mäuse in der Lage sind, adaptive Verhaltensanpassung an homogenes Risiko und verschiedene Prädationstypen abzurufen. So sind sie in der Lage, Luft- von Bodenprädatoren zu unterscheiden und jeweils das Verhalten zu zeigen, dass die größtmögliche Sicherheit mit sich bringt. Die simultane Kombination von verschiedenen Prädatoren bewirkt hierbei additive Effekte. Gibt es keine Auswahl zwischen Habitaten, sondern nur unterschiedliche homogene Risikolevel, reagieren sie auf steigendes Risiko immer mit verminderter Aktivität und konzentrieren ihre Nahrungssuche auf weniger Futterstellen, beuten diese dafür jedoch länger aus. Die Wertigkeit von Futterstellen und alternativen Optionen verändert sich also mit dem Risikolevel. Ähnliches zeigt sich auch in den unterschiedlichen Futtersuchstrategien von Männchen und Weibchen. Die untersuchte Art ist polygyn und multivoltin, dementsprechend verbinden die Männchen mit ihrer Nahrungssuche Aktivitäten wie die Suche nach Paarungspartnern und unterscheiden sich die Aktivitätsmuster zwischen Männchen und Weibchen. Zusätzlich zeigen die Ergebnisse, das laktierende Weibchen in der Lage sind, das Risiko für sich und für Ihre Jungen abzuschätzen, wenn sie mit einem Nestprädator (Sorex araneus) konfrontiert werden. Für die Interaktion zwischen diesen beiden Arten ist jedoch die Saison (und damit die Ressourcenlage), in der sie sich begegnen, von entscheidender Bedeutung. Wühlmäuse reagieren mit entsprechenden Verhaltensanpassungen zum Schutz des Nestes um die Überlebenschancen ihrer letzten Würfe im Herbst zu erhöhen. Die vorliegende Arbeit konnte grundsätzliche Probleme der antiprädatorischen Verhaltensanpassung von Beutetieren klären und wichtige Faktoren der Entscheidungsfindung unter Prädationsdruck analysieren. Sie zeigt, dass Tiere das Risiko in ihrer Umgebung nicht unbedingt über direkt Signale wahrnehmen, sondern ihre Verhaltensstrategien einem empfundenen Gesamtrisikolevel anpassen. Dies ermöglicht ihnen, adaptive Strategien zu verfolgen, auch wenn sie keine Auswahl an sicheren Habitaten haben. Sie zeigt auch die unterschiedliche Wahrnehmung von Risiken durch Männchen und Weibchen, die durch die unterschiedlichen mit der Aktivität zusätzlich wahrgenommenen Chancen verknüpft zu sein scheint. Zusätzlich wurde der Einfluss des reproduktiven Status (z.B. laktierend), sowie der Ressourcenlage (z. B. je nach Saison) nachgewiesen. KW - Nahrungssuche KW - Microtus KW - Wühlmaus KW - Prädation KW - Optimalität KW - Predation KW - Microtus KW - Optimality KW - Seasonality KW - Foraging Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-48562 ER - TY - JOUR A1 - Liesenjohann, Thilo A1 - Liesenjohann, Monique A1 - Trebaticka, Lenka A1 - Sundell, Janne A1 - Haapakoski, Marko A1 - Ylonen, Hannu A1 - Eccard, Jana T1 - State-dependent foraging: lactating voles adjust their foraging behavior according to the presence of a potential nest predator and season JF - Behavioral ecology and sociobiology N2 - Parental care often produces a trade-off between meeting nutritional demands of offspring and the duties of offspring protection, especially in altricial species. Parents have to leave their young unattended for foraging trips, during which nestlings are exposed to predators. We investigated how rodent mothers of altricial young respond to risk of nest predation in their foraging decisions. We studied foraging behavior of lactating bank voles (Myodes glareolus) exposed to a nest predator, the common shrew (Sorex araneus). We conducted the experiment in summer (high resource provisioning for both species) and autumn (less food available) in 12 replicates with fully crossed factors "shrew presence" and "season." We monitored use of feeding stations near and far from the nest as measurement of foraging activity and strategic foraging behavior. Vole mothers adapted their strategies to shrew presence and optimized their foraging behavior according to seasonal constraints, resulting in an interaction of treatment and season. In summer, shrew presence reduced food intake from feeding stations, while it enhanced intake in autumn. Shrew presence decreased the number of visited feeding stations in autumn and concentrated mother's foraging efforts to fewer stations. Independent of shrew presence or season, mothers foraged more in patches further away from the nest than near the nest. Results indicate that females are not investing in nest guarding but try to avoid the accumulation of olfactory cues near the nest leading a predator to the young. Additionally, our study shows how foraging strategies and nest attendance are influenced by seasonal food provision. KW - Myodes glareolus KW - Optimal foraging KW - Sorex araneus KW - Nest protection KW - Seasonality KW - Interference Y1 - 2015 U6 - https://doi.org/10.1007/s00265-015-1889-x SN - 0340-5443 SN - 1432-0762 VL - 69 IS - 5 SP - 747 EP - 754 PB - Springer CY - New York ER -