TY - JOUR A1 - Kloss, Lena A1 - Fischer, Markus A1 - Durka, Walter T1 - Land-use effects on genetic structure of a common grassland herb a matter of scale JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - The most common management practices in European grasslands are grazing by livestock and mowing for silage and hay. Grazing and mowing differ in their potential effects on plant gene flow and resulting population genetic structure. After assessing its breeding system, we investigated the effect of land use on the population genetic structure in the common grassland plant Veronica chamaedrys using 63 study populations on meadows, mown pastures and pastures in three regions in Germany, the so-called Biodiversity Exploratories. We determined plant density and analysed the genetic diversity, differentiation and small-scale genetic structure using amplified fragment length polymorphism (AFLP) markers. The breeding system of V chamaedrys turned out as self-incompatible and outcrossing. Its genetic diversity did not differ among land-use types. This may be attributed to large population sizes and the strong dispersal ability of the species, which maintains genetically diverse populations not prone to genetic drift. Genetic differentiation among populations was low (overall F(ST) = 0.075) but significant among the three regions. Land use had only weak effects on population differentiation in only one region. However, land use affected small-scale genetic structure suggesting that gene flow within plots was more restricted on meadows than on mown and unmown pastures. Our study shows that land use influences genetic structure mainly at the small scale within populations, despite high gene flow. KW - Biodiversity exploratories KW - Mowing KW - Grazing KW - AFLP KW - Veronica KW - Breeding system KW - Pollination experiment KW - Pollen-ovule ratio KW - Isolation by distance KW - Spatial autocorrelation Y1 - 2011 U6 - https://doi.org/10.1016/j.baae.2011.06.001 SN - 1439-1791 VL - 12 IS - 5 SP - 440 EP - 448 PB - Elsevier CY - Jena ER -