TY - JOUR A1 - Alter, S. Elizabeth A1 - Meyer, Matthias A1 - Post, Klaas A1 - Czechowski, Paul A1 - Gravlund, Peter A1 - Gaines, Cork A1 - Rosenbaum, Howard C. A1 - Kaschner, Kristin A1 - Turvey, Samuel T. A1 - van der Plicht, Johannes A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100 JF - Molecular ecology N2 - Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. KW - ancient DNA KW - climate change KW - last glacial maximum KW - marine mammal Y1 - 2015 U6 - https://doi.org/10.1111/mec.13121 SN - 0962-1083 SN - 1365-294X VL - 24 IS - 7 SP - 1510 EP - 1522 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Chang, Dan A1 - Knapp, Michael A1 - Enk, Jacob A1 - Lippold, Sebastian A1 - Kircher, Martin A1 - Lister, Adrian M. A1 - MacPhee, Ross D. E. A1 - Widga, Christopher A1 - Czechowski, Paul A1 - Sommer, Robert A1 - Hodges, Emily A1 - Stümpel, Nikolaus A1 - Barnes, Ian A1 - Dalén, Love A1 - Derevianko, Anatoly A1 - Germonpré, Mietje A1 - Hillebrand-Voiculescu, Alexandra A1 - Constantin, Silviu A1 - Kuznetsova, Tatyana A1 - Mol, Dick A1 - Rathgeber, Thomas A1 - Rosendahl, Wilfried A1 - Tikhonov, Alexey N. A1 - Willerslev, Eske A1 - Hannon, Greg A1 - Lalueza i Fox, Carles A1 - Joger, Ulrich A1 - Poinar, Hendrik N. A1 - Hofreiter, Michael A1 - Shapiro, Beth T1 - The evolutionary and phylogeographic history of woolly mammoths BT - a comprehensive mitogenomic analysis JF - Scientific reports N2 - Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0–2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths. Y1 - 2017 U6 - https://doi.org/10.1038/srep44585 SN - 2045-2322 VL - 7 PB - Nature Publishing Group CY - London ER -