TY - JOUR A1 - Halamek, Jan A1 - Teller, Carsten A1 - Makower, Alexander A1 - Fournier, Didier A1 - Scheller, Frieder W. T1 - EQCN-based cholinesterase biosensors N2 - The binding of acetylcholinesterase (AChE) to a propidium-modified piezoelectric quartz crystal and its surface enzymatic activity have been investigated. Propidium binds to a site remote to the active center of AChE - the peripheral anionic site (PAS) - which is located on the rim of the gorge to the active site. The gold electrodes of the quartz crystal were first modified with 11-mercaptoundecanoic acid to which propidium was coupled. AChE binding was monitored by a quartz crystal nanobalance (QCN), followed by amperometric activity evaluation of the AChE loaded on the sensor. Interestingly, the binding is strong but does not inhibit AChE. However, an excess of propidium in solution inhibits the immobilized enzyme. The surface enzymatic activities observed depend on the amount of enzyme and differ according to the type and species, i.e. number of enzyme subunits (Electrophorus electricus tetrameric, Drosophila melanogaster mono- and dimeric form - DmAChE). The operational stability and regeneration, effect of propidium in solution and detection limit for substrate for various AChEs were investigated amperometrically. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/00134686 U6 - https://doi.org/10.1016/j.electacta.2006.03.047 SN - 0013-4686 ER - TY - JOUR A1 - Halamek, Jan A1 - Teller, Carsten A1 - Zeravik, Jiri A1 - Fournier, Didier A1 - Makower, Alexander A1 - Scheller, Frieder W. T1 - Characterization of binding of cholinesterases to surface immobilized ligands N2 - We summarize here the development of various piezoelectric biosensors utilizing cholinesterase (ChE) as the recognition element. In our work we studied the interaction between cholinesterase and its ligands (propidium, carnitine, benzylgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO) and paraoxon). The sensor modification was based on a self-assembled monolayer (SAM) of a thiol compound (11-mercaptoundecanoic acid) on the gold electrode and the subsequent covalent coupling of the cholinesterase ligand to this SAM. The ligand-modified piezoelectric sensors were placed in a flow system to allow the on-line monitoring of cholinesterase binding and the enzymatic activity quantification by amperometry. Cholinesterases from different species-acetylcholinesterase (AChE) from Electrophorus electricus , AChE from Drosophila melanogaster , and butyrylcholinesterase (BChE) of human origin-were tested on the various immobilized ligands. Our research allowed the development of a competitive assay for the detection of organophosphates in river water samples using the BZE-DADOO-modified piezosensor. Another direction of research was pointed on the characterization of the interactions between ChE and its ligands. The kinetic binding constants were derived using a one- to-one binding model Y1 - 2006 UR - http://www.informaworld.com/openurl?genre=journal&issn=0003-2719 U6 - https://doi.org/10.1080/00032710600713107 SN - 0003-2719 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Yarman, Aysu A1 - Bachmann, Till A1 - Hirsch, Thomas A1 - Kubick, Stefan A1 - Renneberg, Reinhard A1 - Schumacher, Soeren A1 - Wollenberger, Ursula A1 - Teller, Carsten A1 - Bier, Frank Fabian ED - Gu, MB ED - Kim, HS T1 - Future of biosensors: a personal view JF - Advances in biochemical engineering, biotechnology JF - Advances in Biochemical Engineering-Biotechnology N2 - Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar' personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables' such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous' biosensors will emerge. KW - Biosensors KW - Molecularly imprinted polymers KW - Personalized medicine Y1 - 2014 SN - 978-3-642-54143-8; 978-3-642-54142-1 U6 - https://doi.org/10.1007/10_2013_251 SN - 0724-6145 VL - 140 SP - 1 EP - 28 PB - Springer CY - Berlin ER - TY - JOUR A1 - Schmitz-Hertzberg, Sebastian-Tim A1 - Mak, Wing Cheung A1 - Lai, Kwok Kei A1 - Teller, Carsten A1 - Bier, Frank Fabian T1 - Multifactorial design of Poly(D, L-lactic-co-glycolic acid) capsules with various release properties for differently sized filling agents JF - Journal of applied polymer science N2 - The hydrolytic degradation and corresponding content release of capsules made of poly(d,l-lactic-co-glycolic acid) (PLGA) strongly depends on the composition and material properties of the initially applied copolymer. Consecutive or simultaneous release from capsule batches of combinable material compositions, therefore, offers high control over the bioavailability of an encapsulated drug. The keynote of this study was the creation of a superordinated database that addressed the correlation between the release kinetics of filling agents with different molecular weights from PLGA capsules of alternating composition. Fluorescein isothiocyanate (FITC)-dextran (with molecular weights of 4, 40, and 2000 kDa) was chosen as a model analyte, whereas the copolymers were taken from various 50:50 PLGA, 75:25 PLGA, and polylactide blends. With reference to recent publications, the capsule properties, such as the size, morphology, and encapsulation efficiency, were further modified during production. Hence, uniform microdisperse and polydisperse submicrometer nanocapsules were prepared by two different water-in-oil-in-water emulsification techniques, and additional effects on the size and morphology were achieved by capsule solidification in two different sodium salt buffers. The qualitative and quantitative examination of the physical capsule properties was performed by confocal laser scanning microscopy, scanning electron microscopy, and Coulter counting techniques to evaluate the capsule size distribution and the morphological appearance of the different batches. The corresponding agent release was quantified by fluorescence measurement of the FITC-dextran in the incubation media and by the direct measurement of the capsule brightness via fluorescence microscopy. In summary, the observed agent release showed a highly controllable flexibility depending on the PLGA blends, preparation methods, and molecular weight of the used filling substances. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4219-4228, 2013 KW - biodegradable copolymers (PLGA) KW - microcapsules KW - submicrometer KW - nanocapsules KW - FITC-dextran release KW - drug delivery system KW - biomedical applications Y1 - 2013 U6 - https://doi.org/10.1002/app.39537 SN - 0021-8995 SN - 1097-4628 VL - 130 IS - 6 SP - 4219 EP - 4228 PB - Wiley-Blackwell CY - Hoboken ER -