TY - JOUR A1 - Brzezinka, Krzysztof A1 - Altmann, Simone A1 - Czesnick, Hjördis A1 - Nicolas, Philippe A1 - Gorka, Michal A1 - Benke, Eileen A1 - Kabelitz, Tina A1 - Jähne, Felix A1 - Graf, Alexander A1 - Kappel, Christian A1 - Bäurle, Isabel T1 - Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling JF - eLife N2 - Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion. FGT1 interacts with chromatin remodelers of the SWI/ SNF and ISWI families, which also display reduced heat stress memory. Genomic targets of the BRM remodeler overlap significantly with FGT1 targets. Accordingly, nucleosome dynamics at loci with altered maintenance of heat-induced expression are affected in fgt1. Together, our results suggest that by modulating nucleosome occupancy, FGT1 mediates stress-induced chromatin memory. Y1 - 2016 U6 - https://doi.org/10.7554/eLife.17061 SN - 2050-084X VL - 5 PB - eLife Sciences Publications CY - Cambridge ER - TY - JOUR A1 - Czesnick, Hjördis A1 - Lenhard, Michael T1 - Size Control in Plants-Lessons from Leaves and Flowers JF - Cold Spring Harbor perspectives in biology N2 - To achieve optimal functionality, plant organs like leaves and petals have to grow to a certain size. Beginning with a limited number of undifferentiated cells, the final size of an organ is attained by a complex interplay of cell proliferation and subsequent cell expansion. Regulatory mechanisms that integrate intrinsic growth signals and environmental cues are required to enable optimal leaf and flower development. This review focuses on plant-specific principles of growth reaching from the cellular to the organ level. The currently known genetic pathways underlying these principles are summarized and network connections are highlighted. Putative non-cell autonomously acting mechanisms that might coordinate plant-cell growth are discussed. Y1 - 2015 U6 - https://doi.org/10.1101/cshperspect.a019190 SN - 1943-0264 VL - 7 IS - 8 PB - Cold Spring Harbor Laboratory Press CY - Cold Spring Harbor, NY ER - TY - JOUR A1 - Czesnick, Hjördis A1 - Lenhard, Michael T1 - Antagonistic control of flowering time by functionally specialized poly(A) polymerases in Arabidopsis thaliana JF - The plant journal N2 - Polyadenylation is a critical 3-end processing step during maturation of pre-mRNAs, and the length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerase (PAPS) isoforms fulfilling specialized functions, as reflected by their different mutant phenotypes. While PAPS1 affects several processes, such as the immune response, organ growth and male gametophyte development, the roles of PAPS2 and PAPS4 are largely unknown. Here we demonstrate that PAPS2 and PAPS4 promote flowering in a partially redundant manner. The enzymes act antagonistically to PAPS1, which delays the transition to flowering. The opposite flowering-time phenotypes in paps1 and paps2 paps4 mutants are at least partly due to decreased or increased FLC activity, respectively. In contrast to paps2 paps4 mutants, plants with increased PAPS4 activity flower earlier than the wild-type, concomitant with reduced FLC expression. Double mutant analyses suggest that PAPS2 and PAPS4 act independently of the autonomous pathway components FCA, FY and CstF64. The direct polyadenylation targets of the three PAPS isoforms that mediate their effects on flowering time do not include FLC sense mRNA and remain to be identified. Thus, our results uncover a role for canonical PAPS isoforms in flowering-time control, raising the possibility that modulating the balance of the isoform activities could be used to fine tune the transition to flowering. Significance Statement The length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. Arabidopsis has three isoforms of nuclear poly(A) polymerase (PAPS): PAPS1 plays a major role in organ growth and plant defence. Here we show that PAPS2 and PAPS4 redundantly promote flowering and act antagonistically to PAPS1, which delays flowering. We suggest that modulating the activity of these isoforms fine-tunes the transition to flowering. KW - polyadenylation KW - 3-end processing KW - poly(A) polymerase KW - flowering time KW - autonomous pathway KW - Arabidopsis thaliana Y1 - 2016 U6 - https://doi.org/10.1111/tpj.13280 SN - 0960-7412 SN - 1365-313X VL - 88 SP - 570 EP - 583 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Kappel, Christian A1 - Trost, Gerda A1 - Czesnick, Hjördis A1 - Ramming, Anna A1 - Kolbe, Benjamin A1 - Vi, Son Lang A1 - Bispo, Claudia A1 - Becker, Jörg D. A1 - de Moor, Cornelia A1 - Lenhard, Michael T1 - Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - The poly(A) tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pgen.1005474 SN - 1553-7390 SN - 1553-7404 VL - 11 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Kappel, Christian A1 - Trost, Gerda A1 - Czesnick, Hjördis A1 - Ramming, Anna A1 - Kolbe, Benjamin A1 - Vi, Son Lang A1 - Bispo, Cláudia A1 - Becker, Jörg D. A1 - de Moor, Cornelia A1 - Lenhard, Michael T1 - Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - The poly(A) tail at 3’ ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. KW - messenger-rna polyadenylation KW - differential expression analysis KW - gene-expression KW - tail-length KW - cytoplasmic polyadenylation KW - poly(a)-binding protein KW - translational control KW - comprehensive analysis KW - specificity factor KW - mammalian-cells Y1 - 2015 U6 - https://doi.org/10.1371/journal.pgen.1005474 SN - 1553-7390 SN - 1553-7404 VL - 11 IS - 8 PB - Public Library of Science CY - San Francisco ER - TY - JOUR A1 - Trost, Gerda A1 - Vi, Son Lang A1 - Czesnick, Hjördis A1 - Lange, Peggy A1 - Holton, Nick A1 - Giavalisco, Patrick A1 - Zipfel, Cyril A1 - Kappel, Christian A1 - Lenhard, Michael T1 - Arabidopsis poly(A) polymerase PAPS1 limits founder-cell recruitment to organ primordia and suppresses the salicylic acid-independent immune response downstream of EDS1/PAD4 JF - The plant journal N2 - Polyadenylation of pre-mRNAs by poly(A) polymerase (PAPS) is a critical process in eukaryotic gene expression. As found in vertebrates, plant genomes encode several isoforms of canonical nuclear PAPS enzymes. In Arabidopsis thaliana these isoforms are functionally specialized, with PAPS1 affecting both organ growth and immune response, at least in part by the preferential polyadenylation of subsets of pre-mRNAs. Here, we demonstrate that the opposite effects of PAPS1 on leaf and flower growth reflect the different identities of these organs, and identify a role for PAPS1 in the elusive connection between organ identity and growth patterns. The overgrowth of paps1 mutant petals is due to increased recruitment of founder cells into early organ primordia, and suggests that PAPS1 activity plays unique roles in influencing organ growth. By contrast, the leaf phenotype of paps1 mutants is dominated by a constitutive immune response that leads to increased resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis and reflects activation of the salicylic acid-independent signalling pathway downstream of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)/PHYTOALEXIN DEFICIENT4 (PAD4). These findings provide an insight into the developmental and physiological basis of the functional specialization amongst plant PAPS isoforms. KW - poly(A) polymerase KW - founder-cell recruitment KW - organ growth KW - polyadenylation Y1 - 2014 U6 - https://doi.org/10.1111/tpj.12421 SN - 0960-7412 SN - 1365-313X VL - 77 IS - 5 SP - 688 EP - 699 PB - Wiley-Blackwell CY - Hoboken ER -