TY - JOUR A1 - Berg, Christian A1 - Bilz, Melanie A1 - Ristow, Michael A1 - Raab, Bernd T1 - Important Plant Areas (IPA) : ein internationales Konzept zum Schutz der Wildpflanzen der Erde Y1 - 2008 ER - TY - JOUR A1 - Bergholz, Kolja A1 - Jeltsch, Florian A1 - Weiß, Lina A1 - Pottek, Janine A1 - Geißler, Katja A1 - Ristow, Michael T1 - Fertilization affects the establishment ability of species differing in seed mass via direct nutrient addition and indirect competition effects JF - Oikos N2 - Fertilization causes species loss and species dominance changes in plant communities worldwide. However, it still remains unclear how fertilization acts upon species functional traits, e.g. seed mass. Seed mass is a key trait of the regeneration strategy of plants, which influences a range of processes during the seedling establishment phase. Fertilization may select upon seed mass, either directly by increased nutrient availability or indirectly by increased competition. Since previous research has mainly analyzed the indirect effects of fertilization, we disentangled the direct and indirect effects to examine how nutrient availability and competition influence the seed mass relationships on four key components during seedling establishment: seedling emergence, time of seedling emergence, seedling survival and seedling growth. We conducted a common garden experiment with 22 dry grassland species with a two-way full factorial design that simulated additional nutrient supply and increased competition. While we found no evidence that fertilization either directly by additional nutrient supply or indirectly by increased competition alters the relationship between seed mass and (time of) seedling emergence, we revealed that large seed mass is beneficial under nutrient-poor conditions (seedlings have greater chances of survival, particularly in nutrient-poor soils) as well as under competition (large-seeded species produced larger seedlings, which suffered less from competition than small-seeded species). Based on these findings, we argue that both factors, i.e. nutrient availability and competition intensity, ought to be considered to understand how fertilization influences seedling establishment and species composition with respect to seed mass in natural communities. We propose a simple conceptual model, in which seed mass in natural communities is determined by competition intensity and nutrient availability. Here, we hypothesize that seed mass shows a U-shaped pattern along gradients of soil fertility, which may explain the contrasting soil fertility-seed mass relationships found in the recent literature. Y1 - 2015 U6 - https://doi.org/10.1111/oik.02193 SN - 0030-1299 SN - 1600-0706 VL - 124 IS - 11 SP - 1547 EP - 1554 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bergholz, Kolja A1 - May, Felix A1 - Giladi, Itamar A1 - Ristow, Michael A1 - Ziv, Yaron A1 - Jeltsch, Florian T1 - Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment JF - Perspectives in plant ecology, evolution and systematics N2 - Spatial environmental heterogeneity is considered a fundamental factor for the maintenance of plant species richness. However, it still remains unclear whether heterogeneity may also facilitate coexistence at fine grain sizes or whether other processes, like mass effects and source sink dynamics due to dispersal, control species composition and diversity at these scales. In this study, we used two complimentary analyses to identify the role of heterogeneity within 15 m x 15 m plots for the coexistence of species-rich annual communities in a semi-arid environment along a steep precipitation gradient. Specifically, we: (a) analyzed the effect of environmental heterogeneity on species, functional and phylogenetic diversity within microsites (alpha diversity, 0.06 m(2) and 1 m(2)), across microsites (beta diversity), and diversity at the entire plot (gamma diversity); (b) further we used two null models to detect non-random trait and phylogenetic patterns in order to infer assembly processes, i.e. whether co-occurring species tend to share similar traits (trait convergence) or dissimilar traits (trait divergence). In general, our results showed that heterogeneity had a positive effect on community diversity. Specifically, for alpha diversity, the effect was significant for functional diversity, and not significant for either species or phylogenetic diversities. For beta diversity, all three measures of community diversity (species, functional, and phylogenetic) increased significantly, as they also did for gamma diversity, where functional measures were again stronger than for species or phylogenetic measures. In addition, the null model approach consistently detected trait convergence, indicating that species with similar traits tended to co-occur and had high abundances in a given microsite. While null model analysis across the phylogeny partly supported these trait findings, showing phylogenetic underdispersion at the 1m(2) grain size, surprisingly when species abundances in microsites were analyzed they were more evenly distributed across the phylogenetic tress than expected (phylogenetic overdispersion). In conclusion, our results provide compelling support that environmental heterogeneity at a relatively fine scale is an important factor for species co-existence as it positively affects diversity as well as influences species assembly. Our study underlines the need for trait-based approaches conducted at fine grain sizes in order to better understand species coexistence and community assembly. (C) 2017 Elsevier GmbH. All rights reserved. KW - Community assembly KW - Plant functional trait KW - Habitat heterogeneity KW - Limiting similarity KW - Environmental filtering KW - Heterogeneity species diversity relationship Y1 - 2017 U6 - https://doi.org/10.1016/j.ppees.2017.01.001 SN - 1433-8319 VL - 24 SP - 138 EP - 146 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Bergholz, Kolja A1 - May, Felix A1 - Ristow, Michael A1 - Giladi, Itamar A1 - Ziv, Yaron A1 - Jeltsch, Florian T1 - Two Mediterranean annuals feature high within-population trait variability and respond differently to a precipitation gradient JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Intraspecific trait variability plays an important role in species adaptation to climate change. However, it still remains unclear how plants in semi-arid environments respond to increasing aridity. We investigated the intraspecific trait variability of two common Mediterranean annuals (Geropogon hybridus and Crupina crupinastrum) with similar habitat preferences. They were studied along a steep precipitation gradient in Israel similar to the maximum predicted precipitation changes in the eastern Mediterranean basin (i.e. -30% until 2100). We expected a shift from competitive ability to stress tolerance with decreasing precipitation and tested this expectation by measuring key functional traits (canopy and seed release height, specific leaf area, N-and P-leaf content, seed mass). Further, we evaluated generative bet-hedging strategies by different seed traits. Both species showed different responses along the precipitation gradient. C. crupinastrum exhibited only decreased plant height toward saridity, while G. hybridus showed strong trends of generative adaptation to aridity. Different seed trait indices suggest increased bet-hedging of G. hybridus in arid environments. However, no clear trends along the precipitation gradient were observed in leaf traits (specific leaf area and leaf N-/P-content) in both species. Moreover, variance decomposition revealed that most of the observed trait variation (>> 50%) is found within populations. The findings of our study suggest that responses to increased aridity are highly species-specific and local environmental factors may have a stronger effect on intraspecific trait variation than shifts in annual precipitation. We therefore argue that trait-based analyses should focus on precipitation gradients that are comparable to predicted precipitation changes and compare precipitation effects to effects of local environmental factors. (C) 2017 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved. KW - Climate change KW - Functional ecology KW - Plant height KW - Drought stress KW - Rainfall gradient KW - Trait-environment relationship KW - Local adaptation KW - Phenotypic plasticity Y1 - 2017 U6 - https://doi.org/10.1016/j.baae.2017.11.001 SN - 1439-1791 SN - 1618-0089 VL - 25 SP - 48 EP - 58 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Bergholz, Kolja A1 - Sittel, Lara-Pauline A1 - Ristow, Michael A1 - Jeltsch, Florian A1 - Weiss, Lina T1 - Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity JF - Ecology and evolution N2 - Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific. KW - hoverflies KW - landscape homogenization KW - plant functional trait KW - syrphids KW - wild bees Y1 - 2022 U6 - https://doi.org/10.1002/ece3.8708 SN - 2045-7758 VL - 12 IS - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Bergholz, Kolja A1 - Sittel, Lara-Pauline A1 - Ristow, Michael A1 - Jeltsch, Florian A1 - Weiß, Lina T1 - Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity JF - Ecology and Evolution N2 - Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60–3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140–400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500–3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific. KW - hoverflies KW - landscape homogenization KW - plant functional trait KW - syrphids KW - wild bees Y1 - 2022 U6 - https://doi.org/10.1002/ece3.8708 SN - 2045-7758 VL - 12 IS - 3 PB - John Wiley & Sons, Inc. CY - Hoboken (New Jersey) ER - TY - GEN A1 - Bergholz, Kolja A1 - Sittel, Lara-Pauline A1 - Ristow, Michael A1 - Jeltsch, Florian A1 - Weiß, Lina T1 - Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60–3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140–400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500–3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1298 KW - hoverflies KW - landscape homogenization KW - plant functional trait KW - syrphids KW - wild bees Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577307 SN - 1866-8372 IS - 1298 ER - TY - JOUR A1 - Bleeker, Walter A1 - Schmitz, Ulf A1 - Ristow, Michael T1 - Interspecific hybridisation between alien and native plant species in Germany and its consequences for native biodiversity N2 - We explored the extent of interspecific hybridisation between alien and native plant species in Germany with a special focus on the potential threat for native biodiversity. In total we listed 134 hybrids which are interpreted as products of hybridisation between 81 alien and 109 native plant species (including 13 archeophytes) that occur in Germany Seventy-five of these hybrids have been recorded in Germany, while the remaining 59 hybrids have not been detected in Germany yet, although both parental species currently occur in Germany. Interspecific hybridisation between abundant alien and rare native species can threaten populations of the native species through outbreeding depression and/ or through high rates of gene flow swamping native populations. We identified 37 threatened native plant species which hybridise with aliens. Seventeen of these threatened plant species may suffer from outbreeding depression when hybridising with a more abundant alien invader (minority disadvantage). Using hybrid abundance as an indicator of hybrid fitness we argue that introgression of alien genes may affect the gene pool of eight threatened native plant species. Consequently, hybridisation with aliens has to be considered as an additional risk potentially leading to a loss of biodiversity and should be included in the repertoire of causes for rare species extinction in German Red Lists of threatened plant species. Y1 - 2007 UR - http://www.sciencedirect.com/science/journal/00063207 U6 - https://doi.org/10.1016/j.biocon.2007.02.004 SN - 0006-3207 ER - TY - INPR A1 - Cierjacks, Arne A1 - Kowarik, Ingo A1 - Joshi, Jasmin Radha A1 - Hempel, Stefan A1 - Ristow, Michael A1 - von der Lippe, Moritz A1 - Weber, Ewald T1 - Biological flora of the british isles: robinia pseudoacacia T2 - The journal of ecology N2 - This account presents information on all aspects of the biology of Robinia pseudoacacia L. that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the Biological Flora of the British Isles: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, and history and conservation.Robinia pseudoacacia, false acacia or black locust, is a deciduous, broad-leaved tree native to North America. The medium-sized, fast-growing tree is armed with spines, and extensively suckering. It has become naturalized in grassland, semi-natural woodlands and urban habitats. The tree is common in the south of the British Isles and in many other regions of Europe.Robinia pseudoacacia is a light-demanding pioneer species, which occurs primarily in disturbed sites on fertile to poor soils. The tree does not tolerate wet or compacted soils. In contrast to its native range, where it rapidly colonizes forest gaps and is replaced after 15-30years by more competitive tree species, populations in the secondary range can persist for a longer time, probably due to release from natural enemies.Robinia pseudoacacia reproduces sexually, and asexually by underground runners. Disturbance favours clonal growth and leads to an increase in the number of ramets. Mechanical stem damage and fires also lead to increased clonal recruitment. The tree benefits from di-nitrogen fixation associated with symbiotic rhizobia in root nodules. Estimated symbiotic nitrogen fixation rates range widely from 23 to 300kgha(-1)year(-1). The nitrogen becomes available to other plants mainly by the rapid decay of nitrogen-rich leaves.Robinia pseudoacacia is host to a wide range of fungi both in the native and introduced ranges. Megaherbivores are of minor significance in Europe but browsing by ungulates occurs in the native range. Among insects, the North American black locust gall midge (Obolodiplosis robiniae) is specific to Robinia and is spreading rapidly throughout Europe. In parts of Europe, Robinia pseudoacacia is considered an invasive non-indigenous plant and the tree is controlled. Negative impacts include shading and changes of soil conditions as a result of nitrogen fixation. KW - climatic limitation KW - ecophysiology KW - geographical and altitudinal distribution KW - germination KW - invasive KW - mycorrhiza KW - nitrogen fixation KW - parasites and diseases KW - reproductive biology KW - soils Y1 - 2013 U6 - https://doi.org/10.1111/1365-2745.12162 SN - 0022-0477 SN - 1365-2745 VL - 101 IS - 6 SP - 1623 EP - 1640 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Doyle, U A1 - Vohland, K A1 - Rock, J A1 - Schuemann, K A1 - Ristow, Michael T1 - Nachwachsende Rohstoffe : eine Einschätzung aus Sicht des Naturschutzes Y1 - 2007 ER -