TY - JOUR A1 - Ben Dor, Yoav A1 - Flax, Tomer A1 - Levitan, Itamar A1 - Enzel, Yehouda A1 - Brauer, Achim A1 - Erel, Yigal T1 - The paleohydrological implications of aragonite precipitation under contrasting climates in the endorheic Dead Sea and its precursors revealed by experimental investigations JF - Chemical geology : official journal of the European Association for Geochemistry N2 - Carbonate minerals are common in both marine and lacustrine records, and are frequently used for paleoenvironmental reconstructions. The sedimentary sequence of the endorheic Dead Sea and its precursors contain aragonite laminae that provide a detailed sedimentary archive of climatic, hydrologic, limnologic and environmental conditions since the Pleistocene. However, the interpretation of these archives requires a detailed understanding of the constraints and mechanisms affecting CaCO3 precipitation, which are still debated. The implications of aragonite precipitation in the Dead Sea and in its late Pleistocene predecessor (Lake Lisan) were investigated in this study by mixing natural and synthetic brines with a synthetic bicarbonate solution that mimics flash-floods composition, with and without the addition of extracellular polymeric substances (EPS). Aragonite precipitation was monitored, and precipitation rates and carbonate yields were calculated and are discussed with respect to modern aquatic environments. The experimental insights on aragonite precipitation are then integrated with microfacies analyses in order to reconstruct and constrain prevailing limnogeological processes and their hydroclimatic drivers under low (interglacial) and high (glacial) lake level stands. Aragonite precipitation took place within days to several weeks after the mixing of the brines with a synthetic bicarbonate solution. Incubation time was proportional to bicarbonate concentration, and precipitation rates were partially influenced by ionic strength. Additionally, extracellular polymeric substances inhibited aragonite precipitation for several months. As for the lake's water budget, our calculations suggest that the precipitation of a typical aragonite lamina (0.5 mm thick) during high lake stand requires unreasonable freshwater inflow from either surface or subsurface sources. This discrepancy can be resolved by considering one or a combination of the following scenarios; (1) discontinuous aragonite deposition over parts of the lake floor; (2) supply of additional carbonate flux (or fluxes) to the lake from aeolian dust and the remobilization and dissolution of dust deposits at the watershed; (3) carbonate production via oxidation of organic carbon by sulfate-reducing bacteria. Altogether, it is suggested that aragonite laminae thickness cannot be directly interpreted for quantitatively reconstructing the hydrological balance for the entire lake, they may still prove valuable for identifying inherent hydroclimatic periodicities at a single site. KW - Dead Sea KW - Lake Lisan KW - Aragonite KW - Varves KW - Paleolimnology KW - Paleohydrology KW - Dead Sea deep drilling project KW - EPS KW - Extracellular polymeric substances KW - Levant climate KW - Eastern Mediterranean KW - Paleoclimate KW - Lacustrine carbonate Y1 - 2021 U6 - https://doi.org/10.1016/j.chemgeo.2021.120261 SN - 0009-2541 SN - 1872-6836 VL - 576 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Neugebauer, Ina A1 - Schwab, M. J. A1 - Waldmann, Nicolas D. A1 - Tjallingii, Rik A1 - Frank, U. A1 - Hadzhiivanova, E. A1 - Naumann, R. A1 - Taha, N. A1 - Agnon, Amotz A1 - Enzel, Y. A1 - Brauer, Achim T1 - Hydroclimatic variability in the Levant during the early last glacial (similar to 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (mu XRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i. e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at similar to 110-108 +/- 5 and similar to 93-87 +/- 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at similar to 108-93 +/- 6 and similar to 87-75 +/- 7 ka correspond to interstadial conditions in the central Mediterranean, i. e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 549 KW - Lake Lisan KW - Middle-east KW - ice-sheet KW - hydrological condition KW - climate variability KW - tropical plumes KW - Winter rainfall KW - Southern Levant KW - soreq cave KW - Near-east Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411879 SN - 1866-8372 IS - 549 ER -