TY - GEN A1 - Schwarte, Sandra A1 - Brust, Henrike A1 - Steup, Martin A1 - Tiedemann, Ralph T1 - Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana T2 - BMC Research Notes N2 - Background Natural accessions of Arabidopsis thaliana are a well-known system to measure levels of intraspecific genetic variation. Leaf starch content correlates negatively with biomass. Starch is synthesized by the coordinated action of many (iso)enzymes. Quantitatively dominant is the repetitive transfer of glucosyl residues to the non-reducing ends of α-glucans as mediated by starch synthases. In the genome of A. thaliana, there are five classes of starch synthases, designated as soluble starch synthases (SSI, SSII, SSIII, and SSIV) and granule-bound synthase (GBSS). Each class is represented by a single gene. The five genes are homologous in functional domains due to their common origin, but have evolved individual features as well. Here, we analyze the extent of genetic variation in these fundamental protein classes as well as possible functional implications on transcript and protein levels. Findings Intraspecific sequence variation of the five starch synthases was determined by sequencing the entire loci including promoter regions from 30 worldwide distributed accessions of A. thaliana. In all genes, a considerable number of nucleotide polymorphisms was observed, both in non-coding and coding regions, and several amino acid substitutions were identified in functional domains. Furthermore, promoters possess numerous polymorphisms in potentially regulatory cis-acting regions. By realtime experiments performed with selected accessions, we demonstrate that DNA sequence divergence correlates with significant differences in transcript levels. Conclusions Except for AtSSII, all starch synthase classes clustered into two or three groups of haplotypes, respectively. Significant difference in transcript levels among haplotype clusters in AtSSIV provides evidence for cis-regulation. By contrast, no such correlation was found for AtSSI, AtSSII, AtSSIII, and AtGBSS, suggesting trans-regulation. The expression data presented here point to a regulation by common trans-regulatory transcription factors which ensures a coordinated action of the products of these four genes during starch granule biosynthesis. The apparent cis-regulation of AtSSIV might be related to its role in the initiation of de novo biosynthesis of granules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 400 KW - Arabidopsis thaliana KW - starch synthases KW - genetic variation KW - transcript level Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401128 ER - TY - JOUR A1 - Nguyen, Hung M. A1 - Schippers, Jos H. M. A1 - Goni-Ramos, Oscar A1 - Christoph, Mathias P. A1 - Dortay, Hakan A1 - van der Hoorn, Renier A. L. A1 - Müller-Röber, Bernd T1 - An upstream regulator of the 26S proteasome modulates organ size in Arabidopsis thaliana JF - The plant journal N2 - In both animal and plant kingdoms, body size is a fundamental but still poorly understood attribute of biological systems. Here we report that the Arabidopsis NAC transcription factor Regulator of Proteasomal Gene Expression' (RPX) controls leaf size by positively modulating proteasome activity. We further show that the cis-element recognized by RPX is evolutionarily conserved between higher plant species. Upon over-expression of RPX, plants exhibit reduced growth, which may be reversed by a low concentration of the pharmacological proteasome inhibitor MG132. These data suggest that the rate of protein turnover during growth is a critical parameter for determining final organ size. KW - Arabidopsis thaliana KW - organ size KW - evolution KW - leaf development KW - proteasome KW - gene regulatory network Y1 - 2013 U6 - https://doi.org/10.1111/tpj.12097 SN - 0960-7412 VL - 74 IS - 1 SP - 25 EP - 36 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Sharma, Tripti A1 - Dreyer, Ingo A1 - Riedelsberger, Janin T1 - The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana JF - Frontiers in plant science N2 - Potassium (K+) is inevitable for plant growth and development. It plays a crucial role in the regulation of enzyme activities, in adjusting the electrical membrane potential and the cellular turgor, in regulating cellular homeostasis and in the stabilization of protein synthesis. Uptake of K+ from the soil and its transport to growing organs is essential for a healthy plant development. Uptake and allocation of K+ are performed by K+ channels and transporters belonging to different protein families. In this review we summarize the knowledge on the versatile physiological roles of plant K+ channels and their behavior under stress conditions in the model plant Arabidopsis thaliana. KW - plant potassium channel KW - Shaker KW - TPK KW - K-ir-like KW - Arabidopsis thaliana KW - voltage-dependent KW - voltage-independent Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00224 SN - 1664-462X VL - 4 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Matallana-Ramirez, Lilian P. A1 - Rauf, Mamoona A1 - Farage-Barhom, Sarit A1 - Dortay, Hakan A1 - Xue, Gang-Ping A1 - Droege-Laser, Wolfgang A1 - Lers, Amnon A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd T1 - NAC Transcription Factor ORE1 and Senescence-Induced BIFUNCTIONAL NUCLEASE1 (BFN1) Constitute a Regulatory Cascade in Arabidopsis JF - Molecular plant N2 - The NAC transcription factor ORE1 is a key regulator of senescence in Arabidopsis thaliana. Here, we demonstrate that senescence-induced and cell death-associated BIFUNCTIONAL NUCLEASE1 (BFN1) is a direct downstream target of ORE1, revealing a previously unknown regulatory cascade.Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana; however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 h after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 h after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct. ORE1 and BFN1 expression patterns largely overlap, as shown by promoterreporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to that of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis-element within the context of the full-length BFN1 promoter drastically reduced ORE1-mediated transactivation capacity in transiently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin immunoprecipitation (ChIP) demonstrates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, namely SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence. KW - Arabidopsis thaliana KW - senescence KW - transcription factor KW - ORE1 KW - BFN1 KW - promoter Y1 - 2013 U6 - https://doi.org/10.1093/mp/sst012 SN - 1674-2052 VL - 6 IS - 5 SP - 1438 EP - 1452 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lukoszek, Radoslaw A1 - Müller-Röber, Bernd A1 - Ignatova, Zoya T1 - Interplay between polymerase II- and polymerase III-assisted expression of overlapping genes JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - Up to 15% of the genes in different genomes overlap. This architecture, although beneficial for the genome size, represents an obstacle for simultaneous transcription of both genes. Here we analyze the interference between RNA-polymerase II (Pol II) and RNA-polymerase III (Pol III) when transcribing their target genes encoded on opposing strands within the same DNA fragment in Arabidopsis thaliana. The expression of a Pol II-dependent protein-coding gene negatively correlated with the transcription of a Pol III-dependent, tRNA-coding gene set. We suggest that the architecture of the overlapping genes introduces an additional layer of control of gene expression. (C) 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. KW - Gene expression KW - Transcription KW - tRNA KW - Nested and overlapping genes KW - Arabidopsis thaliana Y1 - 2013 U6 - https://doi.org/10.1016/j.febslet.2013.09.033 SN - 0014-5793 SN - 1873-3468 VL - 587 IS - 22 SP - 3692 EP - 3695 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Benina, Maria A1 - Obata, Toshihiro A1 - Mehterov, Nikolay A1 - Ivanov, Ivan A1 - Petrov, Veselin A1 - Toneva, Valentina A1 - Fernie, Alisdair R. A1 - Gechev, Tsanko S. T1 - Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature JF - Frontiers in plant science N2 - Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4 degrees C) and subsequent return to optimal temperatures (21 degrees C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21 degrees C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species. KW - Arabidopsis thaliana KW - Haberlea rhodopensis KW - low temperature stress KW - metabolite profiling KW - Thellungiella halophila Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00499 SN - 1664-462X VL - 4 IS - 1 PB - Frontiers Research Foundation CY - Lausanne ER -