TY - GEN A1 - Repasch, Marisa A1 - Wittmann, Hella A1 - Scheingross, Joel S. A1 - Sachse, Dirk A1 - Szupiany, Ricardo A1 - Orfeo, Oscar A1 - Fuchs, Margret A1 - Hovius, Niels T1 - Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric 10Be T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Quantifying the time scales of sediment transport and storage through river systems is fundamental for understanding weathering processes, biogeochemical cycling, and improving watershed management, but measuring sediment transit time is challenging. Here we provide the first systematic test of measuring cosmogenic meteoric Beryllium-10 (10Bem) in the sediment load of a large alluvial river to quantify sediment transit times. We take advantage of a natural experiment in the Rio Bermejo, a lowland alluvial river traversing the east Andean foreland basin in northern Argentina. This river has no tributaries along its trunk channel for nearly 1,300 km downstream from the mountain front. We sampled suspended sediment depth profiles along the channel and measured the concentrations of 10Bem in the chemically extracted grain coatings. We calculated depth-integrated 10Bem concentrations using sediment flux data and found that 10Bem concentrations increase 230% from upstream to downstream, indicating a mean total sediment transit time of 8.4 ± 2.2 kyr. Bulk sediment budget-based estimates of channel belt and fan storage times suggest that the 10Bem tracer records mixing of old and young sediment reservoirs. On a reach scale, 10Bem transit times are shorter where the channel is braided and superelevated above the floodplain, and longer where the channel is incised and meandering, suggesting that transit time is controlled by channel morphodynamics. This is the first systematic application of 10Bem as a sediment transit time tracer and highlights the method's potential for inferring sediment routing and storage dynamics in large river systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1119 KW - meteoric 10Be KW - sediment transit time KW - river sediment KW - floodplains KW - sediment routing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-494324 SN - 1866-8372 IS - 1119 ER - TY - JOUR A1 - Repasch, Marisa A1 - Wittmann, Hella A1 - Scheingross, Joel S. A1 - Sachse, Dirk A1 - Szupiany, Ricardo A1 - Orfeo, Oscar A1 - Fuchs, Margret A1 - Hovius, Niels T1 - Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric 10Be JF - Journal of Geophysical Research: Earth Surface N2 - Quantifying the time scales of sediment transport and storage through river systems is fundamental for understanding weathering processes, biogeochemical cycling, and improving watershed management, but measuring sediment transit time is challenging. Here we provide the first systematic test of measuring cosmogenic meteoric Beryllium-10 (10Bem) in the sediment load of a large alluvial river to quantify sediment transit times. We take advantage of a natural experiment in the Rio Bermejo, a lowland alluvial river traversing the east Andean foreland basin in northern Argentina. This river has no tributaries along its trunk channel for nearly 1,300 km downstream from the mountain front. We sampled suspended sediment depth profiles along the channel and measured the concentrations of 10Bem in the chemically extracted grain coatings. We calculated depth-integrated 10Bem concentrations using sediment flux data and found that 10Bem concentrations increase 230% from upstream to downstream, indicating a mean total sediment transit time of 8.4 ± 2.2 kyr. Bulk sediment budget-based estimates of channel belt and fan storage times suggest that the 10Bem tracer records mixing of old and young sediment reservoirs. On a reach scale, 10Bem transit times are shorter where the channel is braided and superelevated above the floodplain, and longer where the channel is incised and meandering, suggesting that transit time is controlled by channel morphodynamics. This is the first systematic application of 10Bem as a sediment transit time tracer and highlights the method's potential for inferring sediment routing and storage dynamics in large river systems. KW - meteoric 10Be KW - sediment transit time KW - river sediment KW - floodplains KW - sediment routing Y1 - 2019 U6 - https://doi.org/10.1029/2019JF005419 SN - 2169-9011 SN - 2169-9003 VL - 125 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Scheingross, Joel S. A1 - Hovius, Niels A1 - Dellinger, M. A1 - Hilton, R. G. A1 - Repasch, M. A1 - Sachse, Dirk A1 - Grocke, D. R. A1 - Vieth-Hillebrand, Andrea A1 - Turowski, Jens M. T1 - Preservation of organic carbon during active fluvial transport and particle abrasion JF - Geology N2 - Oxidation of particulate organic carbon (POC) during fluvial transit releases CO2 to the atmosphere and can influence global climate. Field data show large POC oxidation fluxes in lowland rivers; however, it is unclear if POC losses occur predominantly during in-river transport, where POC is in continual motion within an aerated environment, or during transient storage in floodplains, which may be anoxic. Determination of the locus of POC oxidation in lowland rivers is needed to develop process-based models to predict POC losses, constrain carbon budgets, and unravel links between climate and erosion. However, sediment exchange between rivers and floodplains makes differentiating POC oxidation during in-river transport from oxidation during floodplain storage difficult. Here, we isolated inriver POC oxidation using flume experiments transporting petrogenic and biospheric POC without floodplain storage. Our experiments showed solid phase POC losses of 0%-10% over similar to 10(3) km of fluvial transport, compared to similar to 7% to >50% losses observed in rivers over similar distances. The production of dissolved organic carbon (DOC) and dissolved rhenium (a proxy for petrogenic POC oxidation) was consistent with small POC lasses, and replicate experiments in static water tanks gave similar results. Our results show that fluvial sediment transport, particle abrasion, and turbulent mixing have a minimal role on POC oxidation, and they suggest that POC losses may accrue primarily in floodplain storage. Y1 - 2019 U6 - https://doi.org/10.1130/G46442.1 SN - 0091-7613 SN - 1943-2682 VL - 47 IS - 10 SP - 958 EP - 962 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Aichner, Bernhard A1 - Makhmudov, Zafar A1 - Rajabov, Iljomjon A1 - Zhang, Qiong A1 - Pausata, Francesco Salvatore R. A1 - Werner, Martin A1 - Heinecke, Liv A1 - Kuessner, Marie L. A1 - Feakins, Sarah J. A1 - Sachse, Dirk A1 - Mischke, Steffen T1 - Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since theLast Glacial Period JF - Geophysical research letters N2 - The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant. KW - climate KW - biomarker KW - geochemistry KW - modelling KW - paleoclimate KW - hydrology Y1 - 2019 U6 - https://doi.org/10.1029/2019GL085202 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13972 EP - 13983 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Dietze, Michael A1 - Swoboda, Charlie A1 - Cook, Kristen L. A1 - Adhikari, Basanta R. A1 - Vieth-Hillebrand, Andrea A1 - Bonnet, Stephane A1 - Reimann, Tony A1 - Koutsodendris, Andreas A1 - Sachse, Dirk T1 - Late holocene landscape collapse of a trans-himalayan dryland BT - human impact and aridification JF - Geophysical research letters N2 - Soil degradation is a severe and growing threat to ecosystem services globally. Soil loss is often nonlinear, involving a rapid deterioration from a stable eco-geomorphic state once a tipping point is reached. Soil loss thresholds have been studied at plot scale, but for landscapes, quantitative constraints on the necessary and sufficient conditions for tipping points are rare. Here, we document a landscape-wide eco-geomorphic tipping point at the edge of the Tibetan Plateau and quantify its drivers and erosional consequences. We show that in the upper Kali Gandaki valley, Nepal, soil formation prevailed under wetter conditions during much of the Holocene. Our data suggest that after a period of human pressure and declining vegetation cover, a 20% reduction of relative humidity and precipitation below 200 mm/year halted soil formation after 1.6 ka and promoted widespread gullying and rapid soil loss, with irreversible consequences for ecosystem services. KW - geomorphology KW - paleoclimate KW - human activity KW - Tibetan plateau KW - late Holocene Y1 - 2019 U6 - https://doi.org/10.1029/2019GL084192 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13814 EP - 13824 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rach, Oliver A1 - Kahmen, Ansgar A1 - Brauer, Achim A1 - Sachse, Dirk T1 - A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D/H ratios JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - Past climatic change can be reconstructed from sedimentary archives by a number of proxies. However, few methods exist to directly estimate hydrological changes and even fewer result in quantitative data, impeding our understanding of the timing, magnitude and mechanisms of hydrological changes. Here we present a novel approach based on delta H-2 values of sedimentary lipid biomarkers in combination with plant physiological modeling to extract quantitative information on past changes in relative humidity. Our initial application to an annually laminated lacustrine sediment sequence from western Europe deposited during the Younger Dryas cold period revealed relative humidity changes of up to 15% over sub-centennial timescales, leading to major ecosystem changes, in agreement with palynological data from the region. We show that by combining organic geochemical methods and mechanistic plant physiological models on well characterized lacustrine archives it is possible to extract quantitative ecohydrological parameters from sedimentary lipid biomarker delta H-2 data. Y1 - 2017 U6 - https://doi.org/10.5194/cp-13-741-2017 SN - 1814-9324 SN - 1814-9332 VL - 13 SP - 741 EP - 757 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Vogeli, Natalie A1 - Najman, Yani A1 - van der Beek, Peter A1 - Huyghe, Pascale A1 - Wynn, Peter M. A1 - Govin, Gwladys A1 - van der Veen, Iris A1 - Sachse, Dirk T1 - Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution JF - Earth & planetary science letters N2 - The Himalaya has a major influence on global and regional climate, in particular on the Asian monsoon system. The foreland basin of the Himalaya contains a record of tectonics and paleoclimate since the Miocene. Previous work on the evolution of vegetation and climate has focused on the central and western Himalaya, where a shift from C3 to C4 vegetation has been observed at similar to 7 Ma and linked to increased seasonality, but the climatic evolution of the eastern part of the orogen is less well understood. In order to track vegetation as a marker of monsoon intensity and seasonality, we analyzed delta C-13 and 8180 values of soil carbonate and associated delta C-13 values of bulk organic carbon from previously dated sedimentary sections exposing the syn-orogenic detrital Dharamsala and Siwalik Groups in the west, and, for the first time, the Siwalik Group in the east of the Himalayan foreland basin. Sedimentary records span from 20 to 1 Myr in the west (Joginder Nagar, Jawalamukhi, and Haripur Kolar sections) and from 13 to 1 Myr in the east (Kameng section), respectively. The presence of soil carbonate in the west and its absence in the east is a first indication of long-term lateral climatic variation, as soil carbonate requires seasonally arid conditions to develop. delta C-13 values in soil carbonate show a shift from around -10 parts per thousand to -2 parts per thousand at similar to 7 Ma in the west, which is confirmed by delta C-13 analyses on bulk organic carbon that show a shift from around -23 parts per thousand to -19 parts per thousand at the same time. Such a shift in isotopic values is likely to be associated with a change from C3 to C4 vegetation. In contrast, delta C-13 values of bulk organic carbon remain at 23 parts per thousand o in the east. Thus, our data show that the current east -west variation in climate was established at similar to 7 Ma. We propose that the regional change towards a more seasonal climate in the west is linked to a decrease of the influence of the Westerlies, delivering less winter precipitation to the western Himalaya, while the east remained annually humid due to its proximity to the monsoonal moisture source. (C) 2017 Elsevier B.V. All rights reserved. KW - Himalaya KW - stable carbon isotopes KW - paleovegetation KW - Siwalik KW - pre-Siwalik KW - monsoon Y1 - 2017 U6 - https://doi.org/10.1016/j.epsl.2017.04.037 SN - 0012-821X SN - 1385-013X VL - 471 SP - 1 EP - 9 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rach, Oliver A1 - Engels, S. A1 - Kahmen, A. A1 - Brauer, Achim A1 - Martin-Puertas, C. A1 - van Geel, B. A1 - Sachse, Dirk T1 - Hydrological and ecological changes in western Europe between 3200 and 2000 years BP derived from lipid biomarker delta D values in lake Meerfelder Maar sediments JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - One of the most significant Late Holocene climate shifts occurred around 2800 years ago, when cooler and wetter climate conditions established in western Europe. This shift coincided with an abrupt change in regional atmospheric circulation between 2760 and 2560 cal years BP, which has been linked to a grand solar minimum with the same duration (the Homeric Minimum). We investigated the temporal sequence of hydroclimatic and vegetation changes across this interval of climatic change (Homeric climate oscillation) by using lipid biomarker stable hydrogen isotope ratios (ED values) and pollen assemblages from the annually-laminated sediment record from lake Meerfelder Maar (Germany). Over the investigated interval (3200-2000 varve years BP), terrestrial lipid biomarker ED showed a gradual trend to more negative values, consistent with the western Europe long-term climate trend of the Late Holocene. At ca. 2640 varve years BP we identified a strong increase in aquatic plants and algal remains, indicating a rapid change in the aquatic ecosystem superimposed on this long-term trend. Interestingly, this aquatic ecosystem change was accompanied by large changes in ED values of aquatic lipid biomarkers, such as nC(21) and nC(23) (by between 22 and 30%(0)). As these variations cannot solely be explained by hydroclimate changes, we suggest that these changes in the Wag value were influenced by changes in n-alkane source organisms. Our results illustrate that if ubiquitous aquatic lipid biomarkers are derived from a limited pool of organisms, changes in lake ecology can be a driving factor for variations on sedimentary lipid MN values, which then could be easily misinterpreted in terms of hydro climatic changes. (C) 2017 Elsevier Ltd. All rights reserved. KW - Holocene KW - Climate dynamics KW - Paleoclimatology KW - Western Europe KW - Continental biomarkers KW - Organic geochemistry KW - Stable isotopes KW - Vegetation dynamics Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.07.019 SN - 0277-3791 VL - 172 SP - 44 EP - 54 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hernandez, Martin A. A1 - Gleixner, Gerd A1 - Sachse, Dirk A1 - Alvarez, Hector M. T1 - Carbon Allocation in Rhodococcus jostii RHA1 in Response to Disruption and Overexpression of nlpR Regulatory Gene, Based on C-13-labeling Analysis JF - Frontiers in microbiology N2 - Nitrogen lipid regulator (NlpR) is a pleiotropic regulator that positively controls genes associated with both nitrogen and lipid metabolism in the oleaginous bacterium Rhodococcus jostii RHA1. In this study, we investigated the effect of nlpR disruption and overexpression on the assimilation of C-13-labeled glucose as carbon source, during cultivation of cells under nitrogen-limiting and nitrogen-rich conditions, respectively. Label incorporation into the total lipid extract (TLE) fraction was about 30% lower in the mutant strain in comparison with the wild type strain under low-nitrogen conditions. Moreover, a higher C-13 abundance (similar to 60%) into the extracellular polymeric substance fraction was observed in the mutant strain, nlpR disruption also promoted a decrease in the label incorporation into several TLE-derivative fractions including neutral lipids (NL), glycolipids (GL), phospholipids (PL), triacylglycerols (TAG), diacylglycerols (DAG), and free fatty acids (FFA), with the DAG being the most affected. In contrast, the nlpR overexpression in RHA1 cells under nitrogen-rich conditions produced an increase of the label incorporation into the TLE and its derivative NL and PL fractions, the last one being the highest C-13 enriched. In addition, a higher C-13 enrichment occurred in the TAG, DAG, and FFA fractions after nlpR induction, with the FFA fraction being the most affected within the TLE. Isotopic-labeling experiments demonstrated that NlpR regulator is contributing in oleaginous phenotype of R. jostii RHA1 to the allocation of carbon into the different lipid fractions in response to nitrogen levels, increasing the rate of carbon flux into lipid metabolism. KW - Rhodococcus KW - RHA1 KW - NlpR KW - regulation KW - C-13-glucose KW - lipid metabolism Y1 - 2017 U6 - https://doi.org/10.3389/fmicb.2017.01992 SN - 1664-302X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Aichner, Bernhard A1 - Hilt, Sabine A1 - Perillon, Cecile A1 - Gillefalk, Mikael A1 - Sachse, Dirk T1 - Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: Effect of groundwater discharge and salinity JF - Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry N2 - Sedimentary lipid biomarkers have become widely used tools for reconstructing past climatic and ecological changes due to their ubiquitous occurrence in lake sediments. In particular, the hydrogen isotopic composition (expressed as delta D values) of leaf wax lipids derived from terrestrial plants has been a focus of research during the last two decades and the understanding of competing environmental and plant physiological factors influencing the delta D values has greatly improved. Comparatively less attention has been paid to lipid biomarkers derived from aquatic plants, although these compounds are abundant in many lacustrine sediments. We therefore conducted a field and laboratory experiment to study the effect of salinity and groundwater discharge on the isotopic composition of aquatic plant biomarkers. We analyzed samples of the common submerged plant species, Potamogeton pectinatus (sago pondweed), which has a wide geographic distribution and can tolerate high salinity. We tested the effect of groundwater discharge (characterized by more negative delta D values relative to lake water) and salinity on the delta D values of n-alkanes from P. pectinatus by comparing plants (i) collected from the oligotrophic freshwater Lake Stechlin (Germany) at shallow littoral depth from locations with and without groundwater discharge, and (ii) plants grown from tubers collected from the eutrophic Lake Muggelsee in nutrient solution at four salinity levels. Isotopically depleted groundwater did not have a significant influence on the delta D values of n-alkanes in Lake Stechlin P. pectinatus and calculated isotopic fractionation factors epsilon(l/w) between lake water and n-alkanes averaged -137 +/- 9%(n-C-23), -136 +/- 7%(n-C-25) and -131 +/- 6%(n-C-27), respectively. Similar epsilon values were calculated for plants from Lake Muggelsee grown in freshwater nutrient solution (-134 +/- 11% for n-C-23), while greater fractionation was observed at increased salinity values of 10 (163 +/- 12%) and 15(-172 +/- 15%). We therefore suggest an average e value of -136 +/- 9% between source water and the major n-alkanes in P. pectinatus grown under freshwater conditions. Our results demonstrate that isotopic fractionation can increase by 30-40% at salinity values 10 and 15. These results could be explained either by inhibited plant growth at higher salinity, or by metabolic adaptation to salt stress that remain to be elucidated. A potential salinity effect on dD values of aquatic lipids requires further examination, since this would impact on the interpretation of downcore isotopic data in paleohydrologic studies. (C) 2017 Elsevier Ltd. All rights reserved. Y1 - 2017 U6 - https://doi.org/10.1016/j.orggeochem.2017.07.021 SN - 0146-6380 VL - 113 SP - 10 EP - 16 PB - Elsevier CY - Oxford ER -